Triple Phase Boundary Reaction in a Mixed-Conducting SOFC Cathode

被引:8
|
作者
Amezawa, K. [1 ]
Fujimaki, Y. [2 ]
Mizuno, K. [2 ]
Kimura, Y. [1 ]
Nakamura, T. [1 ]
Nitta, K. [3 ]
Terada, Y. [3 ]
Iguchi, F. [2 ]
Yashiro, K. [4 ]
Yugami, H. [2 ]
Kawada, T. [4 ]
机构
[1] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Grad Sch Engn, Aoba Ku, 6-6-01 Aramaki Aoba, Sendai, Miyagi 9808579, Japan
[3] Japan Synchrotron Radiat Res Inst, 1-1-1 Koto, Sayo 6795198, Japan
[4] Tohoku Univ, Grad Sch Environm Studies, Aoba Ku, 6-6-01 Aramaki Aoba, Sendai, Miyagi 9808579, Japan
来源
SOLID-GAS ELECTROCHEMICAL INTERFACES 2 (SGEI 2) | 2017年 / 77卷 / 10期
基金
日本科学技术振兴机构;
关键词
D O I
10.1149/07710.0041ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The contribution of the triple phase boundary reaction in a mixed ionic and electronic conducting (MIEC) cathode in solid oxide fuel cells (SOFCs) was investigated. For this purpose, patterned thin film electrodes with or without triple phase boundaries, which simplified the microstructure of a practical porous electrode, were proposed and fabricated. In this work, an La0.6Sr0.4CoO3-delta (LSC) electrode on a Ce0.9Gd0.1O1.95 electrolyte was chosen as a model SOFC MIEC cathode. Effective reaction area was evaluated by means of operando micro X-ray absorption spectroscopy with the model electrodes under 10(-2) bar of p(O-2) at 873 K. It was found that the introduction of triple phase boundaries shortened the effective reaction area. The results may indicate the non-negligible contribution of the triple phase boundary reaction even in SOFC MIEC cathodes.
引用
收藏
页码:41 / 47
页数:7
相关论文
共 50 条
  • [21] Study of the Heterogeneity of a Mixed-Conducting Electrochemical Electrode
    Nechitailov, A. A.
    Glebova, N. V.
    Tomasov, A. A.
    Krasnova, A. O.
    Zelenina, N. K.
    TECHNICAL PHYSICS, 2019, 64 (06) : 839 - 847
  • [22] Development of mixed-conducting oxides for gas separation
    Argonne Natl Lab, Argonne, United States
    Solid State Ionics, 1-4 (363-370):
  • [23] Electrical conduction and reaction analysis on mixed-conducting iron-doped barium zirconate
    Zhang, Haomiao
    Wilhite, Benjamin A.
    SOLID STATE IONICS, 2016, 286 : 7 - 18
  • [24] Development of mixed-conducting oxides for gas separation
    Balachandran, U
    Ma, B
    Maiya, PS
    Mieville, RL
    Dusek, JT
    Picciolo, JJ
    Guan, J
    Dorris, SE
    Liu, M
    SOLID STATE IONICS, 1998, 108 (1-4) : 363 - 370
  • [25] A mixed-conducting BaPr0.8In0.2O3-δ cathode for proton-conducting solid oxide fuel cells
    Wang, Zhihong
    Liu, Mingfei
    Sun, Wenping
    Ding, Dong
    Lu, Zhe
    Liu, Meilin
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 27 : 19 - 21
  • [26] Mixed-Conducting Perovskites as Cathode Materials for Protonic Ceramic Fuel Cells: Understanding the Trends in Proton Uptake
    Zohourian, Reihaneh
    Merkle, Rotraut
    Raimondi, Giulia
    Maier, Joachim
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (35)
  • [27] Direct Visualization of Oxygen Incorporation for Oxygen Reduction on Porous Mixed-Conducting LaSrCoO3 Cathode
    Chanthanumataporn, Merika
    Nagasawa, Tsuyoshi
    Hanamura, Katsunori
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) : F581 - F586
  • [28] CUXCS2, A NEW MIXED-CONDUCTING MATERIAL
    KUO, HJ
    CAPPELLETTI, RL
    PECHAN, MJ
    SOLID STATE IONICS, 1987, 24 (04) : 315 - 325
  • [29] Mixed-conducting barium cerate membranes for hydrogen separation
    Rhodes, JM
    Wachsman, ED
    SOLID-STATE IONIC DEVICES, 1999, 99 (13): : 151 - 158
  • [30] Electrode kinetics of porous mixed-conducting oxygen electrodes
    Liu, M
    Winnick, J
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (05) : 1881 - 1884