Chemical bonding in "early-late" transition metal complexes [(H2N)3M-M'(CO)4] (M = Ti, Zr, Hf; M' = Co, Rh, Ir)

被引:8
|
作者
Krapp, Andreas [1 ,2 ]
Frenking, Gernot [1 ]
机构
[1] Univ Marburg, Fachbereich Chem, D-35039 Marburg, Germany
[2] Univ Oslo, Senter Teoretisk Beregningsorientert Kjemi, Kjemisk Inst, N-0315 Oslo, Norway
关键词
Bonding analysis; Multiple bonding; Transition metal compounds; Metal-metal bond; REGULAR 2-COMPONENT HAMILTONIANS; D-BLOCK ANALOGS; ELECTRONIC-STRUCTURE; HETEROBIMETALLIC COMPLEXES; MOLECULAR-STRUCTURE; STATE METHOD; ENERGY; CL; CR; APPROXIMATION;
D O I
10.1007/s00214-009-0696-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum chemical DFT calculations at the BP86/TZ2P level have been carried out for the complex [HSi(SiH2NH)(3)Ti-Co(CO)(4)], which is a model for the experimentally observed compound [MeSi{SiMe2N(4-MeC6H4)}(3)Ti-Co(CO)(4)] and for the series of model systems [(H2N)(3)M-M'(CO)(4)] (M = Ti, Zr, Hf; M' = Co, Rh, Ir). The Ti-Co bond in [HSi(SiH2NH)(3)Ti-Co(CO)(4)] has a theoretically predicted BDE of D (e) = 59.3 kcal/mol. The bonding analysis suggests that the titanium atom carries a large positive charge, while the cobalt atom is nearly neutral. The covalent and electrostatic contributions to the Ti-Co attraction have similar strength. The Ti-Co bond can be classified as a polar single bond, which has only little pi contribution. Calculations of the model compound (H2N)(3)Ti-Co(CO)(4) show that the rotation of the amino groups has a very large influence on the length and on the strength of the Ti-Co bond. The M-M' bond in the series [(H2N)(3)M-M'(CO)(4)] becomes clearly stronger with Ti < Zr < Hf, while the differences between the bond strengths due to change of the atoms M' are much smaller. The strongest M-M' bond is predicted for [(H2N)(3)Hf-Ir(CO)(4)].
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
  • [31] THE LIGAND POLYHEDRAL MODEL AND ITS APPLICATION TO THE FLUXIONAL BEHAVIOR OF M(4)(CO)(12-N) (M=CO, RH, IR N=1, 2, 4) CLUSTERS
    ROBERTS, YV
    JOHNSON, BFG
    BENFIELD, RE
    INORGANICA CHIMICA ACTA, 1995, 229 (1-2) : 221 - 227
  • [32] N-H Activation of Ammonia by [{M(μ-OMe)(cod)}2] (M = Ir, Rh) Complexes: A DFT Study
    Velez, Ederley
    Betore, M. Pilar
    Casado, Miguel A.
    Polo, Victor
    ORGANOMETALLICS, 2015, 34 (16) : 3959 - 3966
  • [33] Structure and bonding of M(CO)5(H2O), M(CO)5(NH3), and M(CO)5(PH3) (M = Cr, Mo, W)
    Frenking, G
    Dapprich, S
    Meisterknecht, T
    Uddin, J
    METAL-LIGAND INTERACTIONS IN CHEMISTRY, PHYSICS AND BIOLOGY, 1999, 546 : 73 - 89
  • [34] How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?
    Vummaleti, Sai V. C.
    Talarico, Giovanni
    Nolan, Steven P.
    Cavallo, Luigi
    Poater, Albert
    ORGANIC CHEMISTRY FRONTIERS, 2016, 3 (01): : 19 - 23
  • [35] Synthesis and properties of double complexes [M(NH3)5Cl][PdBr4] (M = Co, Rh, Ir)
    Venediktov, AB
    Korenev, SV
    Shubin, YV
    Kuznetsov, NA
    Yusenko, KV
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2003, 48 (03) : 379 - 384
  • [36] Molecular and Crystal Structures of Cp☆M(S2N2) (M = Co, Rh, Ir) and Related Compounds
    Matuska, Vit
    Tersago, Karla
    Kilian, Petr
    Van Alsenoy, Christian
    Blockhuys, Frank
    Slawin, Alexandra M. Z.
    Woollins, J. Derek
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2009, (29-30) : 4483 - 4490
  • [37] The ligand polyhedral model and its application to the fluxional behaviour of M4(CO)12-n (M = Co, Rh, Ir; n = 1, 2, 4) clusters
    Roberts, Y. V.
    Johnson, B. F. G.
    Benfield, R. E.
    Inorganica Chimica Acta, 229 (1-2):
  • [39] Structure and bonding of d8 allyl complexes M(η3-allyl)L3 (M = Co, Rh, Ir;: L = phosphine or carbonyl)
    Ariafard, A
    Lin, ZY
    ORGANOMETALLICS, 2005, 24 (15) : 3800 - 3806
  • [40] BONDING IN M(CO)N GROUPS (WHEREN=1,2,3 AND 4)
    KETTLE, SFA
    JOURNAL OF THE CHEMICAL SOCIETY A -INORGANIC PHYSICAL THEORETICAL, 1966, (04): : 420 - &