Classical analogue of the ionic Hubbard model

被引:7
|
作者
Hafez, M. [1 ]
Jafari, S. A. [2 ,3 ]
Adibi, Sh [2 ]
Shahbazi, F. [2 ]
机构
[1] Tarbiat Modares Univ, Dept Phys, Tehran, Iran
[2] Isfahan Univ Technol, Dept Phys, Esfahan 8415683111, Iran
[3] Inst Res Fundamental Sci IPM, Sch Phys, Tehran 193955531, Iran
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 24期
关键词
MOTT INSULATOR; BAND INSULATOR; MONTE-CARLO; TRANSITION; LATTICE;
D O I
10.1103/PhysRevB.81.245131
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In our earlier work [M. Hafez et al., Phys. Lett. A 373, 4479 (2009)] we employed the flow equation method to obtain a classical effective model from a quantum mechanical parent Hamiltonian called, the ionic Hubbard model. The classical ionic Hubbard model (CIHM) obtained in this way contains solely Fermionic occupation numbers of two species corresponding to particles with. and. spin, respectively. In this paper, we employ the transfer matrix method to analytically solve the CIHM at finite temperature in one dimension. In the limit of zero temperature, we find two insulating phases at large and small Coulomb interaction strength, U, mediated with a gapless phase, resulting in two continuous metal-insulator transitions. Our results are further supported with Monte Carlo simulations.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] CLASSICAL LINEAR CHAIN HUBBARD MODEL - METAL-INSULATOR TRANSITION
    BARI, RA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (01): : 35 - 35
  • [32] A Quasi-Classical Model of the Hubbard Gap in Lightly Compensated Semiconductors
    Poklonski, N. A.
    Vyrko, S. A.
    Kovalev, A. I.
    Zabrodskii, A. G.
    SEMICONDUCTORS, 2016, 50 (03) : 299 - 308
  • [33] FROM THE HUBBARD-MODEL TO CLASSICAL SPIN-FLUCTUATION THEORY
    WEBER, W
    KIRCHNER, B
    VOITLANDER, J
    PHYSICAL REVIEW B, 1994, 50 (02) : 1090 - 1101
  • [34] Quantum perfect fluid cosmological model and its classical analogue
    Batista, AB
    Fabris, JC
    Goncalves, SVB
    Tossa, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (20): : 2749 - 2749
  • [35] Classical Analogue to the Kitaev Model and Majoranalike Topological Bound States
    Liu, Ting-Wei
    Semperlotti, Fabio
    PHYSICAL REVIEW APPLIED, 2023, 20 (01)
  • [36] A PERMUTATION MODEL FOR FREE RANDOM VARIABLES AND ITS CLASSICAL ANALOGUE
    Benaych-Georges, Florent
    Nechita, Ion
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 242 (01) : 33 - 51
  • [38] Excitation spectrum of one-dimensional extended ionic Hubbard model
    M. Hafez
    S. A. Jafari
    The European Physical Journal B, 2010, 78 : 323 - 333
  • [39] Modelling one-dimensional insulating materials with the ionic Hubbard model
    Refolio, MC
    Sancho, JML
    Rubio, J
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (42) : 6635 - 6644
  • [40] Phase diagram of the one-dimensional extended ionic Hubbard model
    Zhao Hong-Xia
    Zhao Hui
    Chen Yu-Guang
    Yan Yong-Hong
    ACTA PHYSICA SINICA, 2015, 64 (10)