Automotive Feature Coordination based on a Machine-Learning Approach

被引:1
|
作者
Dominka, Sven [1 ]
Tabrizi, Sarah [1 ]
Mandl, Michael [1 ]
Duebner, Michael [1 ]
机构
[1] Robert Bosch AG, Bosch Engn, Vienna, Austria
关键词
machine-learning; feature-interaction; automotive; engine control unit; powertrain; embedded software;
D O I
10.1109/CCWC51732.2021.9376110
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The number of cyber-physical features within modern automotive powertrains is continuously rising. Such features are often not independent from each other, but interact. Such interaction is either known & desired or unknown & undesired. We propose a centralized coordination of such automotive features based on a machine-learning approach. After the generation of training data, learning of a neural network takes place during design-time. Embedded source code of the learned and frozen net is then automatically generated for the electronic control unit. A machine-learning-based feature coordinator for a gasoline combustion engine was prototypically developed. We applied hyperparameter optimization to find a minimal sized model with high accuracy. The trained neural network was successfully transferred to a combustion engine control unit.
引用
收藏
页码:726 / 731
页数:6
相关论文
共 50 条
  • [1] A machine-learning approach to multi-robot coordination
    Wang, Ying
    de Silva, Clarence W.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2008, 21 (03) : 470 - 484
  • [2] Secret Key Classification Based on Electromagnetic Analysis and Feature Extraction Using Machine-Learning Approach
    Mukhtar, Naila
    Kong, Yinan
    FUTURE NETWORK SYSTEMS AND SECURITY, FNSS 2018, 2018, 878 : 80 - 92
  • [3] A Machine-learning based Unbiased Phishing Detection Approach
    Shirazi, Hossein
    Zweigle, Landon
    Ray, Indrakshi
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON E-BUSINESS AND TELECOMMUNICATIONS (SECRYPT), VOL 1, 2020, : 423 - 430
  • [4] Prediction of Nucleophilicity and Electrophilicity Based on a Machine-Learning Approach
    Liu, Yidi
    Yang, Qi
    Cheng, Junjie
    Zhang, Long
    Luo, Sanzhong
    Cheng, Jin-Pei
    CHEMPHYSCHEM, 2023, 24 (14)
  • [5] Parametrization of Sunspot Groups Based on Machine-Learning Approach
    Illarionov, Egor
    Tlatov, Andrey
    SOLAR PHYSICS, 2022, 297 (02)
  • [6] Parametrization of Sunspot Groups Based on Machine-Learning Approach
    Egor Illarionov
    Andrey Tlatov
    Solar Physics, 2022, 297
  • [7] A new approach of clustering based machine-learning algorithm
    Al-Omary, Alauddin Yousif
    Jamil, Mohammad Shahid
    KNOWLEDGE-BASED SYSTEMS, 2006, 19 (04) : 248 - 258
  • [8] Machine-learning Denoising in Feature Film Production
    Dahlberg, Henrik
    Adler, David
    Newlin, Jeremy
    SIGGRAPH '19 -ACM SIGGRAPH 2019 TALKS, 2019,
  • [9] Dynamic Feature Selection for Machine-Learning Based Concurrency Regulation in STM
    Rughetti, Diego
    Di Sanzo, Pierangelo
    Ciciani, Bruno
    Quaglia, Francesco
    2014 22ND EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP 2014), 2014, : 68 - 75
  • [10] Improving mmWave backhaul reliability: A machine-learning based approach
    Ferreira, Tania
    Figueiredo, Alexandre
    Raposo, Duarte
    Luis, Miguel
    Rito, Pedro
    Sargento, Susana
    AD HOC NETWORKS, 2023, 140