Symmetric polynomials, generalized Jacobi-Trudi identities and τ-fuctions

被引:9
|
作者
Harnad, J. [1 ,2 ]
Lee, Eunghyun [1 ,3 ]
机构
[1] Univ Montreal, Ctr Rech Math, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[2] Concordia Univ, Dept Math & Stat, 1455 Maisonneuve Blvd W, Montreal, PQ H3G 1M8, Canada
[3] Nazarbayev Univ, Dept Math, Kazakhstan 53 Kabanbay Batyr Ave, Astana 010000, Kazakhstan
基金
加拿大自然科学与工程研究理事会;
关键词
SCHUR FUNCTION EXPANSIONS; FERMIONIC CONSTRUCTION; 2-MATRIX MODELS; MATRIX MODELS; ALGEBRAS; FORMULA;
D O I
10.1063/1.5051546
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An element [Phi] is an element of Gr(n) (H+, F) of the Grassmannian of n-dimensional subspaces of the Hardy space H+ = H-2, extended over the field F = C(x(1),...,x(n)), may be associated to any polynomial basis phi = {phi(0), phi(1), ... } for C(x). The Pliicker coordinates S-lambda,n(phi)(x(1),...,x(n)) of [Phi], labeled by partitions lambda, provide an analog of Jacobi's bialternant formula, defining a generalization of Schur polynomials. Applying the recursion relations satisfied by the polynomial system phi to the analog {h(i)((0) )of the complete symmetric functions generates a doubly infinite matrix h(i)((j)) of symmetric polynomials that determine an element [H] is an element of Gr(n) (H+,F). This is shown to coincide with [Phi], implying a set of generalized Jacobi identities, extending a result obtained by Sergeev and Veselov [Moscow Math. J. 14, 161-168 (2014)] for the case of orthogonal polynomials. The symmetric polynomials S-lambda,n(phi)(x(1),...,x(n))are shown to be KP (Kadomtsev-Petviashvili) tau-functions in terms of the power sums [x] of the x(a)'s, viewed as KP flow variables. A fermionic operator representation is derived for these, as well as for the infinite sums Sigma S-lambda(lambda,n)phi([x]) S-lambda,S-n theta(t) associated to any pair of polynomial bases (phi, theta), which are shown to be 2D Toda lattice tau-functions. A number of applications are given, including classical group character expansions, matrix model partition functions, and generators for random processes. Published by AIP Publishing.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A short proof of generalized Jacobi-Trudi expansions for Macdonald polynomials
    Lassalle, Michel
    JACK, HALL-LITTLEWOOD AND MACDONALD POLYNOMIALS, 2006, 417 : 271 - 280
  • [2] ON A JACOBI-TRUDI IDENTITY FOR SUPERSYMMETRIC POLYNOMIALS
    PRAGACZ, P
    THORUP, A
    ADVANCES IN MATHEMATICS, 1992, 95 (01) : 8 - 17
  • [3] Vertex Operators Arising from Jacobi-Trudi Identities
    Jing, Naihuan
    Rozhkovskaya, Natasha
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (02) : 679 - 701
  • [4] Jacobi-Trudi formula for refined dual stable Grothendieck polynomials
    Kim, Jang Soo
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 180
  • [5] Jacobi-Trudi formulas for flagged refined dual stable Grothendieck polynomials
    Kim, Jang Soo
    ALGEBRAIC COMBINATORICS, 2022, 5 (01):
  • [6] An Algebraic Identity and the Jacobi-Trudi Formula
    Bekker, B. M.
    Ivanov, O. A.
    Merkurjev, A. S.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2016, 49 (01) : 1 - 4
  • [7] Generalized Jacobi-Trudi determinants and evaluations of Schur multiple zeta values
    Bachmann, Henrik
    Charlton, Steven
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 87
  • [8] Jacobi-Trudi identities for Boolean tableaux and ideal-tableaux of zigzag posets
    Asai, K
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (05) : 525 - 543
  • [9] Jacobi-Trudi formulas and determinantal varieties
    Sam, Steven, V
    Weyman, Jerzy
    ALGEBRAIC COMBINATORICS, 2023, 6 (05): : 1163 - 1175
  • [10] Jacobi-Trudi Determinants over Finite Fields
    Anzis, Ben
    Chen, Shuli
    Gao, Yibo
    Kim, Jesse
    Li, Zhaoqi
    Patrias, Rebecca
    ANNALS OF COMBINATORICS, 2018, 22 (03) : 447 - 489