Vertex Operators Arising from Jacobi-Trudi Identities

被引:14
|
作者
Jing, Naihuan [1 ]
Rozhkovskaya, Natasha [2 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Kansas State Univ, Dept Math, Manhattan, KS 66502 USA
关键词
Symmetric Function; Vertex Operator; Clifford Algebra; Heisenberg Algebra; Elementary Symmetric Function;
D O I
10.1007/s00220-015-2564-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give an interpretation of the boson-fermion correspondence as a direct consequence of the Jacobi-Trudi identity. This viewpoint enables us to construct from a generalized version of the Jacobi-Trudi identity the action of a Clifford algebra on the polynomial algebras that arrive as analogues of the algebra of symmetric functions. A generalized Giambelli identity is also proved to follow from that identity. As applications, we obtain explicit formulas for vertex operators corresponding to characters of the classical Lie algebras, shifted Schur functions, and generalized Schur symmetric functions associated to linear recurrence relations.
引用
收藏
页码:679 / 701
页数:23
相关论文
共 50 条
  • [1] Vertex Operators Arising from Jacobi–Trudi Identities
    Naihuan Jing
    Natasha Rozhkovskaya
    Communications in Mathematical Physics, 2016, 346 : 679 - 701
  • [2] Symmetric polynomials, generalized Jacobi-Trudi identities and τ-fuctions
    Harnad, J.
    Lee, Eunghyun
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (09)
  • [3] An Algebraic Identity and the Jacobi-Trudi Formula
    Bekker, B. M.
    Ivanov, O. A.
    Merkurjev, A. S.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2016, 49 (01) : 1 - 4
  • [4] Jacobi-Trudi identities for Boolean tableaux and ideal-tableaux of zigzag posets
    Asai, K
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (05) : 525 - 543
  • [5] Jacobi-Trudi formulas and determinantal varieties
    Sam, Steven, V
    Weyman, Jerzy
    ALGEBRAIC COMBINATORICS, 2023, 6 (05): : 1163 - 1175
  • [6] ON A JACOBI-TRUDI IDENTITY FOR SUPERSYMMETRIC POLYNOMIALS
    PRAGACZ, P
    THORUP, A
    ADVANCES IN MATHEMATICS, 1992, 95 (01) : 8 - 17
  • [7] Jacobi-Trudi Determinants over Finite Fields
    Anzis, Ben
    Chen, Shuli
    Gao, Yibo
    Kim, Jesse
    Li, Zhaoqi
    Patrias, Rebecca
    ANNALS OF COMBINATORICS, 2018, 22 (03) : 447 - 489
  • [8] JACOBI-TRUDI DETERMINANTS AND CHARACTERS OF MINIMAL AFFINIZATIONS
    Sam, Steven V.
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 272 (01) : 237 - 244
  • [9] Jacobi-Trudi Determinants over Finite Fields
    Ben Anzis
    Shuli Chen
    Yibo Gao
    Jesse Kim
    Zhaoqi Li
    Rebecca Patrias
    Annals of Combinatorics, 2018, 22 : 447 - 489
  • [10] PROOF OF A CONJECTURE ON IMMANENTS OF THE JACOBI-TRUDI MATRIX
    GREENE, C
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 171 : 65 - 79