共 50 条
Synchronization induced by directed higher-order interactions
被引:51
|作者:
Gallo, Luca
[1
,2
,3
]
Muolo, Riccardo
[3
,4
,5
]
Gambuzza, Lucia Valentina
[6
]
Latora, Vito
[1
,2
,7
,8
]
Frasca, Mattia
[6
,9
]
Carletti, Timoteo
[3
,4
]
机构:
[1] Univ Catania, Dept Phys & Astron Ettore Majorana, Via S Sofia 64, I-95125 Catania, Italy
[2] Ist Nazl Fis Nucl, Sez Catania, Via S Sofia 64, I-95125 Catania, Italy
[3] Namur Inst Complex Syst, NaXys, Rue Grafe 2, B-5000 Namur, Belgium
[4] Univ Namur, Dept Math, Rue Grafe 2, B-5000 Namur, Belgium
[5] Univ Fed Rio de Janeiro, Dept Appl Math, Math Inst, Ave Athos da Silveira Ramos 149, BR-21941909 Rio De Janeiro, Brazil
[6] Univ Catania, Dept Elect Elect & Comp Sci Engn, Viale Andrea Doria 6, I-95125 Catania, Italy
[7] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
[8] Complex Sci Hub, Josefstadter Str 39, A-1080 Vienna, Austria
[9] Consiglio Nazl Ric IASI CNR, Ist Anal Sistemi Informat A Ruberti, Via Taurini 19, I-00185 Rome, Italy
关键词:
COMPLEX;
DYNAMICS;
D O I:
10.1038/s42005-022-01040-9
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
Non-reciprocal interactions play a crucial role in many social and biological complex systems. While directionality has been thoroughly accounted for in networks with pairwise interactions, its effects in systems with higher-order interactions have not yet been explored as deserved. Here, we introduce the concept of M-directed hypergraphs, a general class of directed higher-order structures, which allows to investigate dynamical systems coupled through directed group interactions. As an application we study the synchronization of nonlinear oscillators on 1-directed hypergraphs, finding that directed higher-order interactions can destroy synchronization, but also stabilize otherwise unstable synchronized states. There is increasing evidence that many higher-order interactions in complex systems are directed. Here, the authors provide a tensorial formalism for directed hypergraphs and investigate their synchronization properties generalizing the Master Stability Function approach.
引用
收藏
页数:11
相关论文