On the hydrothermal features of radiative Fe3O4-graphene hybrid nanofluid flow over a slippery bended surface with heat source/sink

被引:130
|
作者
Acharya, Nilankush [1 ]
Mabood, Fazle [2 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
[2] Fanshawe Coll, Dept Informat Technol, London, ON, Canada
关键词
Hybrid nanofluid; Bended surface; Surface slip; Suction; injection; Nonlinear radiation; Heat source; sink; TRANSFER ENHANCEMENT; STRETCHING SHEET; LORENTZ FORCE; SUCTION/INJECTION; EXTRACTION;
D O I
10.1007/s10973-020-09850-1
中图分类号
O414.1 [热力学];
学科分类号
摘要
The present investigation concentrates on the hydrothermal features of both hybrid nanofluid and usual nanofluid flow over a slippery permeable bent structure. The surface has also been considered to be coiled inside the circular section of radius R. Ferrous and graphene nanoparticles along with the host fluid water are taken to simulate the flow. The existence of heat sink/source and thermal radiation are incorporated within the system. Resulting equations are translated into its non-dimensional form using similarity renovation and solved by the RK-4 method. The consequence of pertinent factors on the flow profile is explored through graphs and tables. Streamlines and isotherms for both hybrid nanofluid and usual nanofluid are depicted to show the hydrothermal variations. The result communicates that temperature is reduced for curvature factor, whereas velocity is found to be accelerated. Heat transfer is intensified for thermal Biot number, and the rate of increment is higher for hybrid nanosuspension. Velocity and temperature are intensified for enhanced nanoparticle concentration. The heat transport process is decreased for the heat source parameter, but the reduction rate is comparatively slower for hybrid nanofluid.
引用
收藏
页码:1273 / 1289
页数:17
相关论文
共 50 条
  • [21] Radiative mixed convection flow of maxwell nanofluid over a stretching cylinder with joule heating and heat source/sink effects
    Saeed Islam
    Arshad Khan
    Poom Kumam
    Hussam Alrabaiah
    Zahir Shah
    Waris Khan
    Muhammad Zubair
    Muhammad Jawad
    Scientific Reports, 10
  • [22] Radiative mixed convection flow of maxwell nanofluid over a stretching cylinder with joule heating and heat source/sink effects
    Islam, Saeed
    Khan, Arshad
    Kumam, Poom
    Alrabaiah, Hussam
    Shah, Zahir
    Khan, Waris
    Zubair, Muhammad
    Jawad, Muhammad
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [23] Hybrid Nanofluids Flow over a Vertical Cylinder with Heat Source/Sink and Prescribed Surface Heat Flux
    Sohut, Farizza Haniem
    Soid, Siti Khuzaimah
    Ishak, Anuar
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2024, 20 (02): : 360 - 377
  • [24] MHD Slip Flow and Heat Transfer of Cu-Fe3O4/Ethylene Glycol-Based Hybrid Nanofluid over a Stretching Surface
    Ezhil, Kumaresan
    Thavada, Sravan Kumar
    Ramakrishna, Suresh Babu
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2021, 11 (04): : 11956 - 11968
  • [25] Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink
    Waqas, Muhammad
    Almutiri, Mariam Redn
    Yagoob, Budur
    Ahmad, Hijaz
    Bilal, Muhammad
    PRAMANA-JOURNAL OF PHYSICS, 2024, 98 (01):
  • [26] BOUNDARY LAYER FLOW OF A CONDUCTING HYPERBOLIC NANOFLUID OVER A STRETCHING SURFACE WITH CHEMICAL REACTION AND HEAT SOURCE/SINK
    Venkateswarlu, S.
    Varma, S. V. K.
    Kumar, R. V. M. S. S. Kiran
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS-BULGARIA, 2022, 52 (02): : 179 - 196
  • [27] Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink
    Muhammad Waqas
    Mariam Redn Almutiri
    Budur Yagoob
    Hijaz Ahmad
    Muhammad Bilal
    Pramana, 98
  • [28] Numerical assessment of MHD hybrid nanofluid flow over an exponentially stretching surface in the presence of mixed convection and non uniform heat source/sink
    Naseem, Anum
    Kasana, Abdul Ghafoor
    RESULTS IN ENGINEERING, 2024, 22
  • [29] MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink
    Jamaludin, Anuar
    Naganthran, Kohilavani
    Nazar, Roslinda
    Pop, Ioan
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2020, 84 : 71 - 80
  • [30] Framing the hydrothermal features of magnetized TiO2-CoFe2O4 water-based steady hybrid nanofluid flow over a radiative revolving disk
    Acharya, Nilankush
    Maity, Suprakash
    Kundu, Prabir Kumar
    MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2020, 16 (04) : 765 - 790