Assessment of Robustness to Temperature in a Negative Feedback Loop and a Feedforward Loop

被引:4
|
作者
Patel, Abhilash [1 ]
Murray, Richard M. [2 ]
Sen, Shaunak [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Elect Engn, New Delhi 110016, India
[2] CALTECH, Pasadena, CA 91125 USA
来源
ACS SYNTHETIC BIOLOGY | 2020年 / 9卷 / 07期
关键词
synthetic biology; temperature robustness; negative feedback; feedforward loop; COMPENSATION; NETWORK;
D O I
10.1021/acssynbio.0c00023
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Robustness to temperature variation is an important specification in biomolecular circuit design. While the cancellation of parametric temperature dependencies has been shown to improve the temperature robustness of the period in a synthetic oscillator design, the performance of other biomolecular circuit designs in different temperature conditions is relatively unclear. Using a combination of experimental measurements and mathematical models, we assessed the temperature robustness of two biomolecular circuit motifs-a negative feedback loop and a feedforward loop. We found that the measured responses of both the circuits changed with temperature, both in the amplitude and in the transient response. We also found that, in addition to the cancellation of parametric temperature dependencies, certain parameter regimes could facilitate the temperature robustness of the negative feedback loop, although at a performance cost We discuss these parameter regimes in the context of the measured data for the negative feedback loop. These results should help develop a framework for assessing and designing temperature robustness in biomolecular circuits.
引用
收藏
页码:1581 / 1590
页数:10
相关论文
共 50 条
  • [41] Isolating the Temperature Feedback Loop and Its Effects on Surface Temperature
    Sejas, Sergio A.
    Cai, Ming
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2016, 73 (08) : 3287 - 3303
  • [42] Performance improvement of optical negative feedback laser by reducing feedback loop length
    Sato, Shota
    Aizawa, Genta
    Yokota, Nobuhide
    Yasaka, Hiroshi
    IEICE ELECTRONICS EXPRESS, 2020, 17 (04)
  • [43] Control of arbuscule development by a transcriptional negative feedback loop in Medicago
    Zhang, Qiang
    Wang, Shuangshuang
    Xie, Qiujin
    Xia, Yuanjun
    Lu, Lei
    Wang, Mingxing
    Wang, Gang
    Long, Siyu
    Cai, Yunfei
    Xu, Ling
    Wang, Ertao
    Jiang, Yina
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [44] Functional characteristics of a double negative feedback loop mediated by microRNAs
    Shuiming Cai
    Peipei Zhou
    Zengrong Liu
    Cognitive Neurodynamics, 2013, 7 : 417 - 429
  • [45] Functional characteristics of a double negative feedback loop mediated by microRNAs
    Cai, Shuiming
    Zhou, Peipei
    Liu, Zengrong
    COGNITIVE NEURODYNAMICS, 2013, 7 (05) : 417 - 429
  • [46] Transcription of the Geminin gene is regulated by a negative-feedback loop
    Ohno, Yoshinori
    Saeki, Keita
    Yasunaga, Shin'ichiro
    Kurogi, Toshiaki
    Suzuki-Takedachi, Kyoko
    Shirai, Manabu
    Mihara, Keichiro
    Yoshida, Kenichi
    Voncken, J. Willem
    Ohtsubo, Motoaki
    Takihara, Yoshihiro
    MOLECULAR BIOLOGY OF THE CELL, 2014, 25 (08) : 1374 - 1383
  • [47] Hairless and the polyamine putrescine form a negative feedback loop in keratinocytes
    Luke, C.
    Alex, C.
    Kim, H.
    Gilmour, S.
    Christiano, A. M.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2010, 130 : S93 - S93
  • [48] Oscillatory Dynamics of Double Negative Feedback Loop Motif by MicroRNAs
    Shen, Jianwei
    Miao, Baojun
    Xu, Yong
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, 2010, 93 : 119 - +
  • [49] Erratum: YAP activates the Hippo pathway in a negative feedback loop
    Xiaoming Dai
    Huan Liu
    Shuying Shen
    Xiaocan Guo
    Huan Yan
    Xinyan Ji
    Li Li
    Jun Huang
    Xin-Hua Feng
    Bin Zhao
    Cell Research, 2017, 27 : 1073 - 1073
  • [50] PHYSIOLOGICAL SIGNIFICANCE OF THE NEGATIVE SHORT-LOOP FEEDBACK OF PROLACTIN
    MILENKOVIC, L
    PARLOW, AF
    MCCANN, SM
    NEUROENDOCRINOLOGY, 1990, 52 (04) : 389 - 392