Elliptic Systems of p-Laplacian Type

被引:6
|
作者
Balaadich, Farah [1 ]
Azroul, Elhoussine [1 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Fac Sci Dhar El Mehraz, BP 1796, Fes, Morocco
来源
TAMKANG JOURNAL OF MATHEMATICS | 2022年 / 53卷 / 01期
关键词
p-Laplacian system; Galerkin method; Young measure; WEAK SOLUTIONS; REGULARITY; GRADIENT;
D O I
10.5556/j.tkjm.53.2022.3296
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an existence result for solutions of nonlinear p-Laplacian systems with data in generalized form: {-div Phi(Du - Theta(u)) = f(x, u, Du) in Omega u = 0 on partial derivative Omega by the theory of Young measures.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 50 条
  • [1] Nonuniformly elliptic equations of p-Laplacian type
    Duc, DM
    Vu, NT
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (08) : 1483 - 1495
  • [2] Existence of very weak solutions to elliptic systems of p-Laplacian type
    Bulicek, Miroslav
    Schwarzacher, Sebastian
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
  • [3] Existence of very weak solutions to elliptic systems of p-Laplacian type
    Miroslav Bulíček
    Sebastian Schwarzacher
    [J]. Calculus of Variations and Partial Differential Equations, 2016, 55
  • [4] Nonhomogeneous Elliptic Kirchhoff Equations of the P-Laplacian Type
    A. Benaissa
    A. Matallah
    [J]. Ukrainian Mathematical Journal, 2020, 72 : 203 - 210
  • [5] Elliptic p-Laplacian systems with nonlinear boundary condition
    Borer, Franziska
    Carl, Siegfried
    Winkert, Patrick
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (02)
  • [6] On an elliptic equation of p-Laplacian type with nonlinear boundary condition
    Nguyen Thanh Chung
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2011, 29 (02): : 43 - 49
  • [7] MULTIPLICITY OF POSITIVE SOLUTIONS FOR QUASILINEAR ELLIPTIC P-LAPLACIAN SYSTEMS
    Aghajani, Asadollah
    Shamshiri, Jamileh
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [8] POSITIVE SOLUTIONS OF SINGULAR MULTIPARAMETER p-LAPLACIAN ELLIPTIC SYSTEMS
    Feng, Meiqiang
    Zhang, Yichen
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (02): : 1121 - 1147
  • [9] On a superlinear elliptic p-Laplacian equation
    Bartsch, T
    Liu, ZL
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) : 149 - 175
  • [10] Solutions of elliptic problems of p-Laplacian type in a cylindrical symmetric domain
    Nguyen Thanh Chung
    Hoang Quoc Toan
    [J]. Acta Mathematica Hungarica, 2012, 135 : 42 - 55