Evaluating Soil Resistance Formulations in Thermal-Based Two-Source Energy Balance (TSEB) Model: Implications for Heterogeneous Semiarid and Arid Regions

被引:0
|
作者
Li, Yan [1 ,2 ,3 ]
Kustas, William P. [2 ]
Huang, Chunlin [1 ]
Nieto, Hector [4 ]
Haghighi, Erfan [5 ,6 ]
Anderson, Martha C. [2 ]
Domingo, Francisco [7 ]
Garcia, Monica [8 ,9 ]
Scott, Russell L. [10 ]
机构
[1] Chinese Acad Sci, Key Lab Remote Sensing Gansu Prov, Heihe Remote Sensing Expt Res Stn, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou, Gansu, Peoples R China
[2] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[3] Univ Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Beijing, Peoples R China
[4] Efficient Use Water Agr Program IRTA Parc Gardeny, Edifici Fruitctr, Lleida, Spain
[5] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] Swiss Fed Inst Aquat Sci & Technol, Dept Water Resources & Drinking Water, Dubendorf, Switzerland
[7] CSIC, EEZA, Almeria, Spain
[8] DTU, Dept Environm Engn, Lyngby, Denmark
[9] Columbia Univ, Int Res Inst Climate & Soc, Earth Inst, Palisades, NY USA
[10] ARS, USDA, Southwest Watershed Res Ctr, Tucson, AZ USA
基金
瑞士国家科学基金会;
关键词
two-source energy balance model; surface energy fluxes; soil resistance formulation; semiarid and arid regions; SENSIBLE HEAT-FLUX; RADIOMETRIC SURFACE-TEMPERATURE; MAPPING DAILY EVAPOTRANSPIRATION; MEDITERRANEAN DRYLANDS; SENSITIVITY-ANALYSIS; EVAPORATIVE FLUXES; PRIESTLEY-TAYLOR; SHADED SURFACES; EDDY COVARIANCE; WIND-SPEED;
D O I
10.1029/2018WR022981
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Relatively small fluctuations in the surface energy balance and evapotranspiration in semiarid and arid regions can be indicative of significant changes to ecosystem health. Therefore, it is imperative to have approaches for monitoring surface fluxes in these regions. The remote sensing-based two-source energy balance (TSEB) model is a suitable method for flux estimation over sparsely vegetated semiarid and arid landscapes since it explicitly considers surface energy flux contributions from soil and vegetation. However, previous studies indicate that TSEB generally underestimates sensible heat flux (H) and hence overestimates latent heat flux (LE) or evapotranspiration for these regions unless soil resistance coefficients are modified based on additional ground information. In this study, TSEB is applied over semiarid and arid regions on three continents using the original soil resistance formulation with modified coefficients and a recently developed physically based soil resistance formulation. Model sensitivity analysis demonstrates the high sensitivity of TSEB with original soil resistance formulation to soil resistance coefficients, while TSEB with the new soil resistance formulation has relatively low sensitivity to uncertainties in all coefficients. The performance of TSEB using different soil resistance formulations is evaluated by comparing modeled H against eddy covariance measurements in six semiarid and arid study sites and ranking the error statistics. Our results indicate that incorporating the new soil resistance formulation into TSEB would enhance its utility in flux estimation over heterogeneous landscapes by obviating its reliance on semiempirical coefficients and thus provide more robust fluxes over sparsely vegetated regions without model calibration and/or parameter tuning.
引用
收藏
页码:1059 / 1078
页数:20
相关论文
共 43 条
  • [41] Evaluation of a two-source patch model to estimate vineyard energy balance using high-resolution thermal images acquired by an unmanned aerial vehicle (UAV)
    Ortega-Farias, Samuel
    Esteban-Condori, Wladimir
    Riveros-Burgos, Camilo
    Fuentes-Penailillo, Fernando
    Bardeen, Matthew
    AGRICULTURAL AND FOREST METEOROLOGY, 2021, 304
  • [42] Estimation of the spatial and temporal variability of evapotranspiration components in a vineyard with the two source energy balance model (TSEB) using both thermal airborne and the fusion of Sentinel 2 and 3 imagery
    Bellvert, J.
    Jofre, C.
    Pelecha, A.
    Mata, M.
    Nieto, H.
    IX INTERNATIONAL SYMPOSIUM ON IRRIGATION OF HORTICULTURAL CROPS, 2022, 1335 : 283 - 288
  • [43] Wind Speed-Independent Two-Source Energy Balance Model Based on a Theoretical Trapezoidal Relationship between Land Surface Temperature and Fractional Vegetation Cover for Evapotranspiration Estimation
    Wang, Xiao-Gang
    Kang, Qing
    Chen, Xiao-Hong
    Wang, Wen
    Fu, Qing-Hua
    ADVANCES IN METEOROLOGY, 2020, 2020