First error bounds for the porous media approximation of the Poisson-Nernst-Planck equations

被引:18
|
作者
Schmuck, Markus [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
瑞士国家科学基金会;
关键词
Homogenization; two-scale convergence; Poisson-Nernst-Planck equations; porous media; supercapacitors; scanning electron microscopy (SEM); TRANSPORT-EQUATIONS; HOMOGENIZATION; CONVECTION; MODEL;
D O I
10.1002/zamm.201100003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-accepted Poisson-Nernst-Planck equations modeling transport of charged particles. By formal multiscale expansions we rederive the porous media formulation obtained by two-scale convergence in [42, 43]. The main result is the derivation of the error which occurs after replacing a highly heterogeneous solid-electrolyte composite by a homogeneous one. The derived estimates show that the approximation errors for both, the ion densities quantified in L2-norm and the electric potential measured in H1-norm, are of order O(s1/2).
引用
收藏
页码:304 / 319
页数:16
相关论文
共 50 条
  • [41] Local averaging type a posteriori error estimates for the nonlinear steady-state Poisson-Nernst-Planck equations
    Yang, Ying
    Shen, Ruigang
    Fang, Mingjuan
    Shu, Shi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [42] Gradient Recovery-Type a Posteriori Error Estimates for Steady-State Poisson-Nernst-Planck Equations
    Shen, Ruigang
    Shu, Shi
    Yang, Ying
    Fang, Mingjuan
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (06) : 1353 - 1383
  • [43] Some Random Batch Particle Methods for the Poisson-Nernst-Planck and Poisson-Boltzmann Equations
    Li, Lei
    Liu, Jian-Guo
    Tang, Yijia
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 32 (01) : 41 - 82
  • [44] Analytical solution of the Poisson-Nernst-Planck equations for an electrochemical system close to electroneutrality
    Pabst, M.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (22):
  • [45] Adaptive time-stepping schemes for the solution of the Poisson-Nernst-Planck equations
    Yan, David
    Pugh, M. C.
    Dawson, F. P.
    APPLIED NUMERICAL MATHEMATICS, 2021, 163 : 254 - 269
  • [46] Electroneutral models for dynamic Poisson-Nernst-Planck systems
    Song, Zilong
    Cao, Xiulei
    Huang, Huaxiong
    PHYSICAL REVIEW E, 2018, 97 (01):
  • [47] EXISTENCE THEORY FOR A POISSON-NERNST-PLANCK MODEL OF ELECTROPHORESIS
    Bedin, Luciano
    Thompson, Mark
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) : 157 - 206
  • [48] Steric PNP (Poisson-Nernst-Planck): Ions in Channels
    Eisenberg, Bob
    Horng, Tzyy-Leng
    Lin, Tai-Chia
    Liu, Chun
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 509A - 509A
  • [49] Very weak solutions for Poisson-Nernst-Planck system
    Hineman, Jay L.
    Ryham, Rolf J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 115 : 12 - 24
  • [50] Test of Poisson-Nernst-Planck theory in ion channels
    Corry, B
    Kuyucak, S
    Chung, SH
    JOURNAL OF GENERAL PHYSIOLOGY, 1999, 114 (04): : 597 - 599