First error bounds for the porous media approximation of the Poisson-Nernst-Planck equations

被引:18
|
作者
Schmuck, Markus [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
瑞士国家科学基金会;
关键词
Homogenization; two-scale convergence; Poisson-Nernst-Planck equations; porous media; supercapacitors; scanning electron microscopy (SEM); TRANSPORT-EQUATIONS; HOMOGENIZATION; CONVECTION; MODEL;
D O I
10.1002/zamm.201100003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-accepted Poisson-Nernst-Planck equations modeling transport of charged particles. By formal multiscale expansions we rederive the porous media formulation obtained by two-scale convergence in [42, 43]. The main result is the derivation of the error which occurs after replacing a highly heterogeneous solid-electrolyte composite by a homogeneous one. The derived estimates show that the approximation errors for both, the ion densities quantified in L2-norm and the electric potential measured in H1-norm, are of order O(s1/2).
引用
收藏
页码:304 / 319
页数:16
相关论文
共 50 条
  • [1] HOMOGENIZATION OF THE POISSON-NERNST-PLANCK EQUATIONS FOR ION TRANSPORT IN CHARGED POROUS MEDIA
    Schmuck, Markus
    Bazant, Martin Z.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (03) : 1369 - 1401
  • [2] An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations
    Yang, Ying
    Lu, Benzhuo
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (01) : 113 - 130
  • [3] Error analysis of finite element method for Poisson-Nernst-Planck equations
    Sun, Yuzhou
    Sun, Pengtao
    Zheng, Bin
    Lin, Guang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 : 28 - 43
  • [4] A multigrid method for the Poisson-Nernst-Planck equations
    Mathur, Sanjay R.
    Murthy, Jayathi Y.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (17-18) : 4031 - 4039
  • [5] Upscaling the Poisson-Nernst-Planck equations for ion transport in weakly heterogeneous charged porous media
    Klika, Vaclav
    Gaffney, Eamonn A.
    APPLIED MATHEMATICS LETTERS, 2023, 137
  • [6] A meshless stochastic method for Poisson-Nernst-Planck equations
    Monteiro, Henrique B. N.
    Tartakovsky, Daniel M.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (05):
  • [7] Steady state solution of the Poisson-Nernst-Planck equations
    Golovnev, A.
    Trimper, S.
    PHYSICS LETTERS A, 2010, 374 (28) : 2886 - 2889
  • [8] Application of the Poisson-Nernst-Planck equations to the migration test
    Krabbenhoft, K.
    Krabbenhoft, J.
    CEMENT AND CONCRETE RESEARCH, 2008, 38 (01) : 77 - 88
  • [9] Entropy method for generalized Poisson-Nernst-Planck equations
    Gonzalez Granada, Jose Rodrigo
    Kovtunenko, Victor A.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (04) : 603 - 619
  • [10] Unsteady analytical solutions to the Poisson-Nernst-Planck equations
    Schoenke, Johannes
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (45)