The Performance Prediction of Electrical Discharge Machining of AISI D6 Tool Steel Using ANN and ANFIS Techniques: A Comparative Study

被引:17
|
作者
Pourasl, Hamed H. [1 ]
Javidani, Mousa [2 ]
Khojastehnezhad, Vahid M. [1 ]
Barenji, Reza Vatankhah [3 ]
机构
[1] Cyprus Int Univ, Dept Mech Engn, TRNC, Via Mersin 10, TR-99258 Nicosia, Turkey
[2] Univ Quebec Chicoutimi, Dept Appl Sci, Saguenay, PQ G7H 2B1, Canada
[3] Nottingham Trent Univ, Sch Sci & Technol, Dept Engn, Nottingham NG11 8NS, England
关键词
electrical discharge machining; artificial neural network (ANN); ANFIS; AISI D6 tool steel; tool wear ratio (TWR); MRR; MATERIAL REMOVAL RATE; SURFACE-ROUGHNESS; PROCESS PARAMETERS; EDM; FINISH; OPTIMIZATION; ELECTRODES;
D O I
10.3390/cryst12030343
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
AISI-D6 steel is widely used in the creation of dies and molds. In the present paper, first the electrical discharge machining (EDM) of the aforementioned material is performed with a testing plan of 32 trials. Then, artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were applied to predict the outputs. The effects of some significant operational parameters-specifically pulse on-time (Ton), pulse current (I), and voltage (V)-on the performance measures of EDM processes such as the material removal rate (MRR), tool wear ratio (TWR), and average surface roughness (Ra) are extracted. To lead the process operators, process plans (i.e., parameter-effect correlations) are created. The outcomes exposed the upper values of pulse on-time caused by higher amounts of MRR and Ra, and likewise lower volumes of TWR. Furthermore, growing the pulse current resulted in upper volumes of the material removal rate, tool wear ratio, and surface roughness. Besides, the higher input voltage resulted in a lower amount of MRR, TWR, and Ra. The estimation models developed by using experimental data recounting MRR, TWR, and Ra. The root means the square error was used to determine the error of training models. Furthermore, the estimated outcomes based on the models have been proven with an unseen validation set of experiments. They are found to be in decent agreement with the experimental issues. The investigation shows the powerful learning capability of an ANFIS model and its advantage in terms of modeling complex linear machining processes.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Evaluation of lubrication mechanism of hybrid nanolubricants in turning hardened AISI D6 tool steel
    de Carvalho, Eric Ramalho Ferreira
    Hermenegildo, Tahiana Francisca da Conceica
    Castro, Nicolau Apoena
    de Melo, Anderson Clayton Alves
    Alves, Salete Martins
    WEAR, 2024, 558
  • [32] An experimental study of surface roughness in electrical discharge machining of AISI 304 stainless steel
    Hernandez-Castillo, Ignacio
    Sanchez-Lopez, Orquidea
    Arturo Lancho-Romero, Guillermo
    Hector Castaneda-Roldan, Cuauhtemoc
    INGENIERIA E INVESTIGACION, 2018, 38 (02): : 90 - 96
  • [33] Recurrent neural network estimation of material removal rate in electrical discharge machining of AISI D2 tool steel
    Pradhan, M. K.
    Das, R.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2011, 225 (B3) : 414 - 421
  • [34] Effects of process parameters on the performance of electrical discharge machining of AISI M42 high speed tool steel alloy
    Choudhary, Rajesh
    Singh, Gagandeep
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (02) : 6313 - 6320
  • [35] The influences of various mixed dielectric fluids on the performance electrical discharge machining of AISI D2 hardened steel
    Lajis, M. A.
    Hosni, N. A. J.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2018, 49 (04) : 413 - 419
  • [36] Comparative study of copper and graphite electrodes performance in Electrical Discharge Machining (EDM) of die steel
    Sonker, Puneet Kumar
    Nahak, Binayaka
    Singh, Thingujam Jackson
    MATERIALS TODAY-PROCEEDINGS, 2022, 68 : 167 - 170
  • [37] Prediction models and generalization performance study in electrical discharge machining
    Gao, Q.
    Zhang, Q. H.
    Su, S. P.
    Zhang, J. H.
    Ge, R. Y.
    E-ENGINEERING & DIGITAL ENTERPRISE TECHNOLOGY, 2008, 10-12 : 677 - 681
  • [38] A comparative study on cutting tool performance in end milling of AISI D3 tool steel
    Camuscu, N
    Aslan, E
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 170 (1-2) : 121 - 126
  • [39] Evaluating surface roughness, tool life, and machining force when milling free-form shapes on hardened AISI D6 steel
    Innocenzo Scandiffio
    Anselmo Eduardo Diniz
    Adriano Fagali de Souza
    The International Journal of Advanced Manufacturing Technology, 2016, 82 : 2075 - 2086
  • [40] Evaluating surface roughness, tool life, and machining force when milling free-form shapes on hardened AISI D6 steel
    Scandiffio, Innocenzo
    Diniz, Anselmo Eduardo
    de Souza, Adriano Fagali
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 82 (9-12): : 2075 - 2086