Fundamentals of fractional revival in graphs

被引:3
|
作者
Chan, Ada [1 ]
Coutinho, Gabriel [2 ]
Drazen, Whitney [3 ]
Eisenberg, Or [4 ]
Godsil, Chris [5 ]
Kempton, Mark [6 ]
Lippner, Gabor [3 ]
Tamon, Christino [7 ]
Zhan, Hanmeng [1 ]
机构
[1] York Univ, Dept Math & Stat, N York, ON, Canada
[2] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil
[3] Northeastern Univ, Dept Math, Boston, MA 02115 USA
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[5] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON, Canada
[6] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[7] Clarkson Univ, Dept Comp Sci, Potsdam, NY 13676 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Fractional revival; Quantum spin network; Graph;
D O I
10.1016/j.laa.2022.09.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a general spectral framework to analyze quantum fractional revival in quantum spin networks. In particular, we determine when the adjacency algebra of a graph contains a matrix of a block diagonal form required for fractional revival, and introduce generalizations of the notions of cospectral and strongly cospectral vertices to arbitrary subsets of vertices. We give several constructions of graphs admitting fractional revival. This work resolves two open questions of Chan et al. (2019) [6].(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:129 / 158
页数:30
相关论文
共 50 条
  • [31] The fractional matching numbers of graphs
    Liu, Y
    Liu, GZ
    [J]. NETWORKS, 2002, 40 (04) : 228 - 231
  • [32] Fractional matching preclusion of graphs
    Yan Liu
    Weiwei Liu
    [J]. Journal of Combinatorial Optimization, 2017, 34 : 522 - 533
  • [33] Integer and fractional security in graphs
    Isaak, Garth
    Johnson, Peter
    Petrie, Caleb
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) : 2060 - 2062
  • [34] ON FRACTIONAL METRIC DIMENSION OF GRAPHS
    Arumugam, S.
    Mathew, Varughese
    Shen, Jian
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (04)
  • [35] Fractional free functions in graphs
    Thakkar, D. K.
    Badiyani, S. M.
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2018, 39 (03): : 739 - 747
  • [36] Fractional matchings on regular graphs
    Guan, Xiaxia
    Ma, Tianlong
    [J]. JOURNAL OF SUPERCOMPUTING, 2024, 80 (13): : 18942 - 18953
  • [37] The Fractional Fourier Transform on Graphs
    Wang, Yi-qian
    Li, Bing-zhao
    Cheng, Qi-yuan
    [J]. 2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 105 - 110
  • [38] Fractional vertex arboricity of graphs
    Yu, Qinglin
    Zuo, Liancui
    [J]. DISCRETE GEOMETRY, COMBINATORICS AND GRAPH THEORY, 2007, 4381 : 245 - +
  • [39] Effects on fractional domination in graphs
    Shanthi, P.
    Amutha, S.
    Anbazhagan, N.
    Prabu, S. Bragatheeswara
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (05) : 7855 - 7864
  • [40] FRACTIONAL DISTANCE DOMINATION IN GRAPHS
    Arumugam, S.
    Mathew, Varughese
    Karuppasamy, K.
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 449 - 459