Refinements of Huygens- and Wilker-type inequalities

被引:9
|
作者
Zhu, Ling [1 ]
Sun, Zhengjie [2 ,3 ]
机构
[1] Zhejiang Gongshang Univ, Dept Math, Hangzhou, Zhejiang, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 04期
关键词
circular functions; hyperbolic functions; refinements and sharpness of the Huygens- and Wilker- type inequalities; proof of the second conjecture by Chen and Chueng;
D O I
10.3934/math.2020191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give some refinements and sharpness of the Huygens- and Wilker- type inequalities, and show a proof of the second conjecture by Chen and Chueng in [10].
引用
收藏
页码:2967 / 2978
页数:12
相关论文
共 50 条
  • [41] THE SHARP INEQUALITIES RELATED TO WILKER TYPE
    Yang, Zhen-Hang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (03): : 1015 - 1026
  • [42] Sharp inequalities related to the Adamovic-Mitrinovic, Cusa, Wilker and Huygens results
    Chen, Chao -Ping
    Malesevic, Branko
    FILOMAT, 2023, 37 (19) : 6319 - 6334
  • [43] THE BEST POSSIBLE CONSTANTS APPROACH FOR WILKER-CUSA-HUYGENS INEQUALITIES VIA STRATIFICATION
    Banjac, Bojan
    Malesevic, Branko
    Micovic, Milos
    Mihailovic, Bojana
    Savatovic, Milica
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2024, 18 (01) : 244 - 288
  • [44] Wilker inequalities of exponential type for circular functions
    Zhu, Ling
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (01)
  • [45] On A General Huygens-Wilker Inequality
    Mhanna, Antoine
    APPLIED MATHEMATICS E-NOTES, 2020, 20 : 79 - 81
  • [46] Wilker inequalities of exponential type for circular functions
    Ling Zhu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [47] REFINEMENTS OF BENNETT TYPE INEQUALITIES
    Guntuase, J. A.
    Persson, L. -e.
    Adeleke, E. O.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (01): : 183 - 193
  • [48] New inequalities of Wilker's type for hyperbolic functions
    Zhu, Ling
    AIMS MATHEMATICS, 2020, 5 (01): : 376 - 384
  • [49] New inequalities of Wilker's type for circular functions
    Zhu, Ling
    AIMS MATHEMATICS, 2020, 5 (05): : 4874 - 4888
  • [50] Some new inequalities of the Huygens type
    Zhu, Ling
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) : 1180 - 1182