Dependence of particle and power dissipation on divertor geometry and plasma shaping in DIII-D small-angle-slot divertor

被引:1
|
作者
Wang, H. Q. [1 ]
Ma, X. [1 ]
Maurizio, R. [1 ,2 ]
Guo, H. Y. [1 ,8 ]
Thomas, D. M. [1 ]
Watkins, J. G. [3 ]
Shafer, M. W. [4 ]
Hyatt, A. W. [1 ]
Moser, A. L. [1 ]
Ren, J. [5 ]
McLean, A. [6 ]
Scotti, F. [6 ]
Stangeby, P. [7 ]
机构
[1] Gen Atom, POB 85608, San Diego, CA 92186 USA
[2] Oak Ridge Associated Univ Oak Ridge, Oak Ridge, TN USA
[3] Sandia Natl Labs, POB 969, Livermore, CA 94551 USA
[4] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
[5] Univ Tennessee Knoxville, Knoxville, TN 37996 USA
[6] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[7] Univ Toronto, 4925 Dufferin St, Toronto, ON M3H 5T6, Canada
[8] ENN Sci & Technol Dev Co Ltd, Langfang 065001, Peoples R China
关键词
DETACHMENT;
D O I
10.1016/j.nme.2022.101301
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Dedicated experiments in DIII-D find that magnetic shaping and divertor target geometry significantly affect the divertor plasma conditions and divertor detachment process in the small-angle-slot (SAS) divertor. The compact SAS divertor in DIII-D provides a good testbed for understanding the effects of a tightly closed divertor on particle and power dissipation, and for application to core-edge integration solutions. A longer outer leg facilitates the achievement of divertor dissipation in the SAS divertor, while a shorter leg leads to higher electron temperatures near the divertor target plate and requires higher upstream densities to achieve the same level of divertor detachment. In addition, with the ion B x del B drift away from the SAS divertor and the outer strike point (OSP) near the outer corner, the target temperature is lower for a particular upstream density than with the OSP on a slanted or flat surface, leading to lower heat flux even when the particle flux remains similar. In contrast, with the ion B x del B drift into the SAS divertor, a strike point at the inner slanted surface exhibits a lower upstream density to achieve divertor detachment than a strike point either at the outer corner or the outer slanted target. Experimental results and SOLPS-ITER simulations with full drifts suggest the strong interplay between drift flows and the neutral distribution resulted from target shaping. Furthermore, in-slot gas puffing has been shown to achieve global divertor detachment with an onset density about 10 % lower than that using main-chamber gas puffing when the outer strike point is placed at the inner slanted surface. Corresponding modelling reveals that the local gas puffing enhances the neutral ionization which potentially facilitates the achievement of divertor dissipation. However, such improvement diminishes when the strike point is at the outer corner, which also indicates the geometric dependence on divertor performance in the SAS divertor. Even with different strike point locations, complete divertor detachment with very low particle and heat fluxes at the divertor targets and a high confinement core with normalized energy confinement factor H-98 > 1.0 can be simultanesouly achieved with the SAS divertor with ion B x del B drift into SAS divertor, demonstrating the benefit of a closed divertor for exploration of core-edge integration.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Experimental measurements of the particle flux and sheath power transmission factor profiles in the divertor of DIII-D
    Donovan, D.
    Buchenauer, D.
    Watkins, J.
    Leonard, A.
    Wong, C.
    Schaffer, M.
    Rudakov, D.
    Lasnier, C.
    Stangeby, P.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S467 - S471
  • [42] Progress in DIII-D towards validating divertor power exhaust predictions
    Jaervinen, A. E.
    Allen, S. L.
    Eldon, D.
    Fenstermacher, M. E.
    Groth, M.
    Hill, D. N.
    Lasnier, C. J.
    Leonard, A. W.
    McLean, A. G.
    Moser, A. L.
    Porter, G. D.
    Rognlien, T. D.
    Samuell, C. M.
    Wang, H. Q.
    Watkins, J. G.
    NUCLEAR FUSION, 2020, 60 (05)
  • [43] Calibrated helium and carbon ion flow measurements in the DIII-D divertor plasma
    Allen, S. L.
    Samuell, C. M.
    Meyer, W. H.
    Jaervinen, A. E.
    Porter, G. D.
    Rognlien, T.
    NUCLEAR MATERIALS AND ENERGY, 2019, 19 : 137 - 142
  • [44] SOLPS modeling of the effect on plasma detachment of closing the lower divertor in DIII-D
    Sang, C. F.
    Stangeby, P. C.
    Guo, H. Y.
    Leonard, A. W.
    Covele, B.
    Lao, L. L.
    Moser, A. L.
    Thomas, D. M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (02)
  • [45] Modeling deep slot divertor concepts at DIII-D using SOLPS-ITER with drifts
    Maurizio, R.
    Leonard, A. W.
    Mclean, A. G.
    Shafer, M. W.
    Stangeby, P. C.
    Thomas, D.
    Yu, J. H.
    NUCLEAR MATERIALS AND ENERGY, 2023, 34
  • [46] Enhanced particle flux due to localized divertor MHD instability in DIII-D tokamak
    Wang, H. Q.
    Watkins, J. G.
    Guo, H. Y.
    Leonard, A. W.
    Thomas, D. M.
    Stepanenko, A. A.
    Krasheninnikov, S. I.
    PHYSICS OF PLASMAS, 2020, 27 (02)
  • [47] Divertor heat and particle flux due to ELMs in DIII-D and ASDEX-upgrade
    Leonard, A.W.
    Suttrop, W.
    Osborne, T.H.
    Evans, T.E.
    Hill, D.N.
    Herrmann, A.
    Lasnier, C.J.
    Thomas, D.N.
    Watkins, J.G.
    West, W.P.
    Weinlich, M.
    Zohm, H.
    Journal of Nuclear Materials, 241-243 : 628 - 632
  • [48] Divertor heat and particle flux due to ELMs in DIII-D and ASDEX-upgrade
    Leonard, AW
    Suttrop, W
    Osborne, TH
    Evans, TE
    Hill, DN
    Herrmann, A
    Lasnier, CJ
    Thomas, DN
    Watkins, JG
    West, WP
    Weinlich, M
    Zohm, H
    JOURNAL OF NUCLEAR MATERIALS, 1997, 241 : 628 - 632
  • [49] PARTICLE-TRANSPORT STUDIES FOR SINGLE-NULL DIVERTOR DISCHARGES IN DIII-D
    RENSINK, ME
    ALLEN, SL
    FUTCH, AH
    HILL, DN
    PORTER, GD
    MAHDAVI, MA
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (07): : 2165 - 2175
  • [50] Optimizing stability, transport, and divertor operation through plasma shaping for steady-state scenario development in DIII-D
    Holcomb, C. T.
    Ferron, J. R.
    Luce, T. C.
    Petrie, T. W.
    Politzer, P. A.
    Challis, C.
    DeBoo, J. C.
    Doyle, E. J.
    Greenfield, C. M.
    Groebner, R. J.
    Groth, M.
    Hyatt, A. W.
    Jackson, G. L.
    Kessel, C.
    La Haye, R. J.
    Makowski, M. A.
    McKee, G. R.
    Murakami, M.
    Osborne, T. H.
    Park, J. -M.
    Prater, R.
    Porter, G. D.
    Reimerdes, H.
    Rhodes, T. L.
    Shafer, M. W.
    Snyder, P. B.
    Turnbull, A. D.
    West, W. P.
    PHYSICS OF PLASMAS, 2009, 16 (05)