For the analysis of simultaneous EEG-fMRI recordings, it is vital to use effective artifact removal tools. This applies in particular to the ballistocardiogram (BCG) artifact which is difficult to remove without distorting signals of interest related to brain activity. Here, we documented the use of surrogate source models to separate the artifact-related signals from brain signals with minimal distortion of the brain activity of interest. The artifact topographies used for surrogate separation were created automatically using principal components analysis (PCA-S) or by manual selection of artifact components utilizing independent components analysis (ICA-S). Using real resting-state data from 55 subjects superimposed with simulated auditory evoked potentials (AEP), both approaches were compared with three established BCG artifact removal methods: Blind Source Separation (BSS), Optimal Basis Set (OBS), and a mixture of both (OBS-ICA). Each method was evaluated for its applicability for ERP and source analysis using the following criteria: the number of events surviving artifact threshold scans, signal-to-noise ratio (SNR), error of source localization, and signal variance explained by the dipolar model. Using these criteria, PCA-S and ICA-S fared best overall, with highly significant differences to the established methods, especially in source localization. The PCA-S approach was also applied to a single subject Berger experiment performed in the MRI scanner. Overall, the removal of BCG artifacts by the surrogate methods provides a substantial improvement for the analysis of simultaneous EEG-fMRI data compared to the established methods.
机构:
Univ Utrecht, Med Ctr, Dept Clin Neurophysiol, Rudolf Magnus Inst Neurosci, Utrecht, NetherlandsUniv Utrecht, Med Ctr, Dept Clin Neurophysiol, Rudolf Magnus Inst Neurosci, Utrecht, Netherlands
Huiskamp, G. J. M.
2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7,
2005,
: 3691
-
3694
机构:
Columbia Univ, Dept Biomed Engn, New York, NY 10027 USAColumbia Univ, Dept Biomed Engn, New York, NY 10027 USA
McIntosh, James R.
Yao, Jiaang
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Biomed Engn, New York, NY 10027 USAColumbia Univ, Dept Biomed Engn, New York, NY 10027 USA
Yao, Jiaang
Hong, Linbi
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Biomed Engn, New York, NY 10027 USAColumbia Univ, Dept Biomed Engn, New York, NY 10027 USA
Hong, Linbi
Faller, Josef
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
US Army, Human Res & Engn Directorate, Res Lab, Washington, DC 20310 USAColumbia Univ, Dept Biomed Engn, New York, NY 10027 USA
机构:
HangZhou Dianzi Univ, Hangzhou 310018, Peoples R China
Key Lab Brain Machine Collaborat Intelligence Zhe, Hangzhou 310018, Peoples R ChinaHangZhou Dianzi Univ, Hangzhou 310018, Peoples R China
Lin, Guang
Zhang, Jianhai
论文数: 0引用数: 0
h-index: 0
机构:
HangZhou Dianzi Univ, Hangzhou 310018, Peoples R China
Key Lab Brain Machine Collaborat Intelligence Zhe, Hangzhou 310018, Peoples R ChinaHangZhou Dianzi Univ, Hangzhou 310018, Peoples R China
Zhang, Jianhai
Liu, Yuxi
论文数: 0引用数: 0
h-index: 0
机构:
HangZhou Dianzi Univ, Hangzhou 310018, Peoples R China
Key Lab Brain Machine Collaborat Intelligence Zhe, Hangzhou 310018, Peoples R ChinaHangZhou Dianzi Univ, Hangzhou 310018, Peoples R China
Liu, Yuxi
Gao, Tianyang
论文数: 0引用数: 0
h-index: 0
机构:
HangZhou Dianzi Univ, Hangzhou 310018, Peoples R China
Key Lab Brain Machine Collaborat Intelligence Zhe, Hangzhou 310018, Peoples R ChinaHangZhou Dianzi Univ, Hangzhou 310018, Peoples R China
Gao, Tianyang
Kong, Wanzeng
论文数: 0引用数: 0
h-index: 0
机构:
HangZhou Dianzi Univ, Hangzhou 310018, Peoples R China
Key Lab Brain Machine Collaborat Intelligence Zhe, Hangzhou 310018, Peoples R ChinaHangZhou Dianzi Univ, Hangzhou 310018, Peoples R China
Kong, Wanzeng
Lei, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Univ, Chongqing 400715, Peoples R China
Key Lab Cognit & Personal, Chongqing 400715, Peoples R ChinaHangZhou Dianzi Univ, Hangzhou 310018, Peoples R China
Lei, Xu
Qiu, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Prov Hosp Chinese Med, Hangzhou 310006, Peoples R ChinaHangZhou Dianzi Univ, Hangzhou 310018, Peoples R China
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Neurol, Seoul, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Neurol, Seoul, South Korea
Lee, E. M.
Kang, J. K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulsan, Coll Med, Asan Med Ctr, Dept Neurol, Seoul, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Neurol, Seoul, South Korea
Kang, J. K.
Oh, S-S
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Neurol, Seoul, South Korea
Oh, S-S
Song, M. S.
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Brain Sci Res Ctr, fMRI Lab, Taejon 305701, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Neurol, Seoul, South Korea
Song, M. S.
Chung, J-Y
论文数: 0引用数: 0
h-index: 0
机构:
Cachon Univ Med & Sci, Neurosci Res Ctr, Cachon, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Neurol, Seoul, South Korea
Chung, J-Y
Jung, K-Y
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Med Ctr, Dept Neurol, Seoul, South Korea
Korea Univ, Coll Med, Dept Neurol, Seoul, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Neurol, Seoul, South Korea
Jung, K-Y
Im, D-M
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Brain Sci Res Ctr, fMRI Lab, Taejon 305701, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Neurol, Seoul, South Korea
Im, D-M
Park, H. W.
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon 305701, South KoreaUniv Ulsan, Coll Med, Asan Med Ctr, Dept Neurol, Seoul, South Korea