A carbonate-free electrolyte for lithium-ion batteries based on lithium bis(fluorosulfonyl)imide and 2-methylglutaronitrile enabling graphite negative electrodes

被引:12
|
作者
Hirata, Kazuhisa [1 ]
Morita, Yoshihiro [2 ]
Kawase, Takeo [3 ]
Sumida, Yasutaka [1 ]
机构
[1] Nippon Shokubai Co Ltd, Innovat & Business Dev Div, Res Ctr, 5-8 Nishi Otabi Cho, Suita, Osaka 5640034, Japan
[2] Nippon Shokubai Co Ltd, Catalysts & Green Energy Mat Business Div, Res Dept, 5-8 Nishi Otabi Cho, Suita, Osaka 5640034, Japan
[3] Nippon Shokubai Co Ltd, Innovat & Business Dev Div, New Business Planning Dept, 5-8 Nishi Otabi Cho, Suita, Osaka 5640034, Japan
关键词
Battery; Electrolytes; Energy storage; Lithium bis(fluorosulfonyl)imide (LiFSI); Carbonate-free; ALUMINUM CORROSION; ETHYLENE CARBONATE; SUPERCONCENTRATED ELECTROLYTES; LIQUID ELECTROLYTES; STABILITY; DINITRILE;
D O I
10.1016/j.electacta.2019.02.032
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report here a carbonate-free electrolyte for lithium-ion batteries with low flammability which consist of lithium bis(fluorosulfonyl)imide (LiFSI) and 2-methylglutaronitrile (MGN) (LiFSI/MGN). LiFSI/MGN enables reversible lithium ion intercalation into graphite without any additives or co-solvents due to LiFSI and MGN-derived SEI formed on the surface of graphite negative electrode. LiCoO2/graphite full-cells with LiFSI/MGN show good cycle stability even at 1C despite its low ionic conductivity and high viscosity while those with LiFSI/succinonitrile (SN) and lithium bis(trifluorosulfonyl)imide (LiTFSI)/SN exhibit capacity fade. Moreover, LiFSI/MGN shows stable liquid phase at low temperature owing to its branched structure. Thus, LiFSI/MGN opens the possibility of lithium-ion batteries with enhanced safety owing to the high thermal stability and low flammability of MGN. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 50 条
  • [21] Unveiling the Mystery of Lithium Bis(fluorosulfonyl)imide as a Single Salt in Low-to-Moderate Concentration Electrolytes of Lithium Metal and Lithium-Ion Batteries
    Zhang, Sheng S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (11)
  • [22] Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl) imide-based ionic liquid for lithium-ion batteries
    Cho, Erang
    Mun, Junyoung
    Chae, Oh B.
    Kwon, Oh Min
    Kim, Hyung-Tae
    Ryu, Ji Heon
    Kim, Young Gyu
    Oh, Seung M.
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 22 : 1 - 3
  • [23] Low-flammable electrolytes with fluoroethylene carbonate based solvent mixtures and lithium bis(trifluoromethanesulfonyl)imide for lithium-ion batteries
    Wang, Zhengqi
    Hofmann, Andreas
    Hanemann, Thomas
    ELECTROCHIMICA ACTA, 2019, 298 : 960 - 972
  • [24] Formulation and Recycling of a Novel Electrolyte Based on Bio-Derived γ-Valerolactone and Lithium Bis(trifluoromethanesulfonyl)imide for Lithium-Ion Batteries
    Teoh, Khai Shin
    Melchiorre, Massimo
    Magar, Sandesh Darlami
    Leibing, Christian
    Ruffo, Francesco
    Gomez-Urbano, Juan Luis
    Balducci, Andrea
    SMALL, 2025, 21 (09)
  • [25] A composite electrode model for lithium-ion batteries with silicon/graphite negative electrodes
    Ai, Weilong
    Kirkaldy, Niall
    Jiang, Yang
    Offer, Gregory
    Wang, Huizhi
    Wu, Billy
    JOURNAL OF POWER SOURCES, 2022, 527
  • [26] Impact of lithium-ion coordination in carbonate-based electrolyte on lithium-ion intercalation kinetics into graphite electrode
    Uchida, Satoshi
    Katada, Tomohide
    Ishikawa, Masashi
    ELECTROCHEMISTRY COMMUNICATIONS, 2020, 114 (114)
  • [27] Ethylene Carbonate-Free Electrolytes for Stable, Safer High-Nickel Lithium-Ion Batteries
    Pan, Ruijun
    Cui, Zehao
    Yi, Michael
    Xie, Qiang
    Manthiram, Arumugam
    ADVANCED ENERGY MATERIALS, 2022, 12 (19)
  • [28] Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations
    Abouimrane, A.
    Ding, J.
    Davidson, I. J.
    JOURNAL OF POWER SOURCES, 2009, 189 (01) : 693 - 696
  • [29] New ether-functionalized pyrazolium ionic liquid electrolytes based on the bis(fluorosulfonyl)imide anion for lithium-ion batteries
    Wang, Guojun
    Shen, Shumin
    Fang, Shaohua
    Luo, Dong
    Yang, Li
    Hirano, Shin-ichi
    RSC ADVANCES, 2016, 6 (75): : 71489 - 71495
  • [30] Composition manipulation of bis(fluorosulfonyl)imide-based ionic liquid electrolyte for high-voltage graphite//LiNi0.5Mn1.5O4 lithium-ion batteries
    Rath, Purna Chandra
    Wang, Yi-Wun
    Patra, Jagabandhu
    Umesh, Bharath
    Yeh, Ting-Ju
    Okada, Shigeto
    Li, Ju
    Chang, Jeng-Kuei
    CHEMICAL ENGINEERING JOURNAL, 2021, 415