Convergence Analysis of the Legendre Spectral Collocation Methods for Second Order Volterra Integro-Differential Equations

被引:34
|
作者
Wei, Yunxia [2 ]
Chen, Yanping [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Second order Volterra integro-differential equations; Gauss quadrature formula; Legendre-collocation methods; convergence analysis; DIFFERENTIAL-EQUATIONS; INTEGRAL-EQUATIONS; APPROXIMATIONS;
D O I
10.4208/nmtma.2011.m1028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of numerical methods is developed for second order Volterra integro-differential equations by using a Legendre spectral approach. We provide a rigorous error analysis for the proposed methods, which shows that the numerical errors decay exponentially in the L-infinity-norm and L-2-norm. Numerical examples illustrate the convergence and effectiveness of the numerical methods.
引用
收藏
页码:419 / 438
页数:20
相关论文
共 50 条