Convergence Analysis of the Legendre Spectral Collocation Methods for Second Order Volterra Integro-Differential Equations

被引:34
|
作者
Wei, Yunxia [2 ]
Chen, Yanping [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Second order Volterra integro-differential equations; Gauss quadrature formula; Legendre-collocation methods; convergence analysis; DIFFERENTIAL-EQUATIONS; INTEGRAL-EQUATIONS; APPROXIMATIONS;
D O I
10.4208/nmtma.2011.m1028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of numerical methods is developed for second order Volterra integro-differential equations by using a Legendre spectral approach. We provide a rigorous error analysis for the proposed methods, which shows that the numerical errors decay exponentially in the L-infinity-norm and L-2-norm. Numerical examples illustrate the convergence and effectiveness of the numerical methods.
引用
下载
收藏
页码:419 / 438
页数:20
相关论文
共 50 条
  • [1] Convergence Analysis of Legendre-Collocation Spectral Methods for Second Order Volterra Integro-Differential Equation with Delay
    Zheng, Weishan
    Chen, Yanping
    Huang, Yunqing
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (02) : 486 - 500
  • [2] Spectral Collocation Methods for Second-Order Volterra Integro-Differential Equations with Weakly Singular Kernels
    Shi, Xiulian
    Chen, Yanping
    Huang, Yunqing
    Huang, Fenglin
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (02) : 480 - 502
  • [3] Piecewise Legendre spectral-collocation method for Volterra integro-differential equations
    Gu, Zhendong
    Chen, Yanping
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2015, 18 (01): : 231 - 249
  • [4] Legendre Spectral Collocation Methods for Volterra Delay-Integro-Differential Equations
    Zhao, Jingjun
    Cao, Yang
    Xu, Yang
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (03) : 1110 - 1133
  • [5] Convergence analysis of spectral methods for high-order nonlinear Volterra integro-differential equations
    Xiulian Shi
    Fenglin Huang
    Hanzhang Hu
    Computational and Applied Mathematics, 2019, 38
  • [6] Legendre Spectral Collocation Methods for Volterra Delay-Integro-Differential Equations
    Jingjun Zhao
    Yang Cao
    Yang Xu
    Journal of Scientific Computing, 2016, 67 : 1110 - 1133
  • [7] Convergence analysis of spectral methods for high-order nonlinear Volterra integro-differential equations
    Shi, Xiulian
    Huang, Fenglin
    Hu, Hanzhang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [8] Piecewise Spectral Collocation Method for Second Order Volterra Integro-Differential Equations with Nonvanishing Delay
    Chen, Zhenrong
    Chen, Yanping
    Huang, Yunqing
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (06) : 1333 - 1356
  • [9] CONVERGENCE ANALYSIS OF THE JACOBI PSEUDO-SPECTRAL METHOD FOR SECOND ORDER VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
    Zhang, Xiao-Yong
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (12) : 2419 - 2440
  • [10] Multistep collocation methods for Volterra integro-differential equations
    Cardone, Angelamaria
    Conte, Dajana
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 : 770 - 785