Genetically encoded fluorescent sensors for redox processes

被引:3
|
作者
Bilan, D. S. [1 ,2 ]
Lukyanov, S. A. [1 ,2 ]
Belousov, V. V. [1 ,2 ]
机构
[1] Russian Acad Sci, Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow 117997, Russia
[2] Minist Healthcare Russian Federat, Nizhni Novgorod State Med Acad, Nizhnii Novgorod 603005, Russia
基金
俄罗斯基础研究基金会;
关键词
genetically encoded fluorescent redox-biosensors; reactive oxygen species; 2GSH/GSSG; NAD(+)/NADH; DISULFIDE BOND FORMATION; INTRACELLULAR HYDROGEN-PEROXIDE; OXYR TRANSCRIPTION FACTOR; CYCLIC-ADP-RIBOSE; EPIDERMAL-GROWTH-FACTOR; PYRIDINE-NUCLEOTIDES; OXIDATIVE STRESS; ARABIDOPSIS-THALIANA; PROTEIN INDICATORS; SUPEROXIDE FLASHES;
D O I
10.1134/S106816201502003X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Redox processes play a key role in the cells of any organism. These processes imply directed flows of electrons transferred via the so-called redox pairs-compounds present in cells simultaneously in both oxidized and reduced states such as NAD(+)/NADH, NADP(+)/NADPH, GSSG/GSH. Up to now, investigation of redox processes in live cells has been hampered by the lack of suitable methods. Genetically encoded fluorescent biosensors represent a new tool for investigation of biological processes including redox ones. Biosensors allow real-time monitoring of messengers, metabolites, and enzyme activities in live systems of different levels of complexity from cultivated cells to transgenic animals. Major types of the known redox-biosensors and examples of their application are presented in this review.
引用
收藏
页码:231 / 244
页数:14
相关论文
共 50 条
  • [31] Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism
    Tao, Rongkun
    Zhao, Yuzheng
    Chu, Huanyu
    Wang, Aoxue
    Zhu, Jiahuan
    Chen, Xianjun
    Zou, Yejun
    Shi, Mei
    Liu, Renmei
    Su, Ni
    Du, Jiulin
    Zhou, Hai-Meng
    Zhu, Linyong
    Qian, Xuhong
    Liu, Haiyan
    Loscalzo, Joseph
    Yang, Yi
    NATURE METHODS, 2017, 14 (07) : 720 - +
  • [32] NAD redox monitoring with the genetically encoded fluorescent biosensor Peredox-mCherry
    Kroll, Johanna B.
    Schwarzlaender, Markus
    Smith, Edward N.
    TRENDS IN PLANT SCIENCE, 2021, 26 (10) : 1087 - 1088
  • [33] Genetically encoded fluorescent tags
    Thorn, Kurt
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28 (07) : 848 - 857
  • [34] Modern optical approaches in redox biology: Genetically encoded sensors and Raman spectroscopy
    Kostyuk, Alexander I.
    Rapota, Diana D.
    Morozova, Kseniia I.
    Fedotova, Anna A.
    Jappy, David
    Semyanov, Alexey, V
    Belousov, Vsevolod V.
    Brazhe, Nadezda A.
    Bilan, Dmitry S.
    FREE RADICAL BIOLOGY AND MEDICINE, 2024, 217 : 68 - 115
  • [35] Genetically encoded fluorescent indicators to visualize molecular processes in living cells
    Sato, Moritoshi
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2008, 81 (02) : 183 - 192
  • [36] Genetically encoded sensors for metabolites
    Deuschle, K
    Fehr, M
    Hilpert, M
    Lager, I
    Lalonde, S
    Looger, LL
    Okumoto, S
    Persson, J
    Schmidt, A
    Frommer, WB
    CYTOMETRY PART A, 2005, 64A (01) : 3 - 9
  • [37] Yes to genetically encoded NO• sensors
    Rita Strack
    Nature Methods, 2016, 13 : 288 - 288
  • [38] Erratum: Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism
    Rongkun Tao
    Yuzheng Zhao
    Huanyu Chu
    Aoxue Wang
    Jiahuan Zhu
    Xianjun Chen
    Yejun Zou
    Mei Shi
    Renmei Liu
    Ni Su
    Jiulin Du
    Hai-Meng Zhou
    Linyong Zhu
    Xuhong Qian
    Haiyan Liu
    Joseph Loscalzo
    Yi Yang
    Nature Methods, 2017, 14 : 928 - 928
  • [39] Yes to genetically encoded NO• sensors
    Strack, Rita
    NATURE METHODS, 2016, 13 (04) : 288 - 288
  • [40] Designs, applications, and limitations of genetically encoded fluorescent sensors to explore plant biology
    Sadoine, Mayuri
    Ishikawa, Yuuma
    Kleist, Thomas J.
    Wudick, Michael M.
    Nakamura, Masayoshi
    Grossmann, Guido
    Frommer, Wolf B.
    Ho, Cheng-Hsun
    PLANT PHYSIOLOGY, 2021, 187 (02) : 485 - 503