Constructal flow distributor as a bipolar plate for proton exchange membrane fuel cells

被引:53
|
作者
Ramos-Alvarado, Bladimir [1 ]
Hernandez-Guerrero, Abel [1 ]
Elizalde-Blancas, Francisco [1 ]
Ellis, Michael W. [2 ]
机构
[1] Univ Guanajuato, Dept Mech Engn, Salamanca, Mexico
[2] Virginia Polytech & State Univ, Dept Mech Engn, Blacksburg, VA USA
关键词
PEMFC; Constructal; CFD; Flow distribution; PEM fuel cells; DESIGN;
D O I
10.1016/j.ijhydene.2011.07.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A plate-type constructal flow distributor is implemented as a gas distributor for a proton exchange membrane fuel cell. A 3D complete model is simulated using CFD techniques. The fuel cell model includes the gas flow channels, the gas diffusion layers and the membrane-electrode assembly (MEA). The governing equations for the mass and momentum transfer are solved including the pertinent source terms due to the electrochemical reactions in the different zones of the fuel cell. Three constructal flow configurations were studied; each pattern is a fractal expansion of the original design, therefore, the only difference between them is the number of branches in the geometry. It was found that the number of branches is the key parameter in the performance of a fuel cell when using the constructal distributors as flow channels. The performance of the fuel cell is reported in I V curves, power curves, and overpotential curves in order to determine which irreversibility is the main cause of energy losses. In terms of flow analysis, it was found that the constructal flow distributor presents a low pressure drop for a wide range of Reynolds number conditions at the inlet, as well as an excellent uniformity of flow distribution. Regardless of the outstanding hydrodynamic performance of the constructal distributors and the large current density values obtained, the implementation of these designs as flow patterns for PEMFCs need further optimization; first, the manufacturing of the plates have to be addressed in an efficient way; and secondly, the application in stacks will require an elaborate design to accomplish this task. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12965 / 12976
页数:12
相关论文
共 50 条
  • [21] Evaluating the Effect of Metal Bipolar Plate Coating on the Performance of Proton Exchange Membrane Fuel Cells
    Ijaodola, Oluwatosin
    Ogungbemi, Emmanuel
    Khatib, Fawwad Nisar.
    Wilberforce, Tabbi
    Ramadan, Mohamad
    El Hassan, Zaki
    Thompson, James
    Olabi, Abdul Ghani
    ENERGIES, 2018, 11 (11)
  • [22] Aluminate cement/graphite conductive composite bipolar plate for proton exchange membrane fuel cells
    Shen Chunhui
    Pan Mu
    Hua Zhoufa
    Yuan Runzhang
    JOURNAL OF POWER SOURCES, 2007, 166 (02) : 419 - 423
  • [23] MODELING OF BIPOLAR PLATES FOR PROTON EXCHANGE MEMBRANE FUEL CELLS
    Ekiz, Ahmet
    Camci, Talha
    Turkmen, Ibrahim
    Sankir, Mehmet
    Uslu, Sitki
    Baker, Derek K.
    Agar, Ertan
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2011, 26 (03): : 591 - 605
  • [24] An overview of bipolar plates in proton exchange membrane fuel cells
    Tang, Aubrey
    Crisci, Louis
    Bonville, Leonard
    Jankovic, Jasna
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2021, 13 (02)
  • [25] Flow distribution in parallel-channel plate for proton exchange membrane fuel cells
    Xiao Yu
    Ming Pingwen
    Hou Ming
    Fu Yunfeng
    Yi Baolian
    Shao, Zhi-Gang
    JOURNAL OF POWER SOURCES, 2008, 185 (02) : 1009 - 1014
  • [26] Flow distribution in a bipolar plate of a proton exchange membrane fuel cell:: experiments and numerical simulation studies
    Barreras, F
    Lozano, A
    Valiño, L
    Marín, C
    Pascau, A
    JOURNAL OF POWER SOURCES, 2005, 144 (01) : 54 - 66
  • [27] The development of a heterogeneous composite bipolar plate of a proton exchange membrane fuel cell
    Lee, Ming-San
    Chen, Long-Jeng
    He, Zheng-Ru
    Yang, Shih-Hong
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2005, 2 (01): : 14 - 19
  • [28] Plasma nitrided titanium as a bipolar plate for proton exchange membrane fuel cell
    Liu, Jing
    Chen, Fei
    Chen, Yongguo
    Zhang, Dongming
    JOURNAL OF POWER SOURCES, 2009, 187 (02) : 500 - 504
  • [29] Numerical Study of the Flow Field Distributor in High-temperature Proton-exchange Membrane Fuel Cells
    Han, Xu
    Liu, Pengwei
    Fan, Shengliang
    Liu, Yang
    Jin, Zunlong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (07):
  • [30] Effect of Bipolar Plate Material on Proton Exchange Membrane Fuel Cell Performance
    Wilberforce, Tabbi
    Ijaodola, Oluwatosin
    Baroutaji, Ahmad
    Ogungbemi, Emmanuel
    Olabi, Abdul Ghani
    ENERGIES, 2022, 15 (05)