Atom interferometry using Bose-Einstein condensates on Earth and in space

被引:0
|
作者
Sackett, C. A. [1 ]
Leonard, R. H. [1 ]
Fallon, A. [1 ]
机构
[1] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
关键词
atom interferometry; microgravity; adiabatic expansion; Bose-Einstein condensate;
D O I
10.1117/12.2086847
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Cold Atom Laboratory is a multipurpose ultracold gas experiment currently being developed for operation on the international space station. It will have the ability to demonstrate proof-of-principle atom interferometry experiments in space. By using microgravity, atom interferometry has the potential to achieve extremely good performance in sensing and navigation applications. Terrestrial experiments can be used to explore potential challenges and prior to launch. One issue of concern is the release of cold atoms from a magnetic trap into free space. Although the atoms will not fall, they can acquire relatively large velocities due to technical limitations such as stray magnetic fields. This can limit the time available for measurements and thus the atom interferometer performance.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Atom optics with Bose-Einstein condensates: quantum reflection and interferometry
    Pasquini, TA
    Jo, G
    Saba, M
    Shin, Y
    Will, S
    Pritchard, DE
    Ketterle, W
    Conference on Atoms and Molecules Near Surfaces, 2005, 19 : 139 - 145
  • [2] Nonlinear interferometry with Bose-Einstein condensates
    Tacla, Alexandre B.
    Boixo, Sergio
    Datta, Animesh
    Shaji, Anil
    Caves, Carlton M.
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [3] Precision interferometry with Bose-Einstein condensates
    Gaaloul, N.
    Hartwig, J.
    Schubert, C.
    Ertmer, W.
    Rasel, E. M.
    ATOM INTERFEROMETRY, 2014, 188 : 657 - 689
  • [4] Interferometry with Bose-Einstein Condensates in Microgravity
    Muentinga, H.
    Ahlers, H.
    Krutzik, M.
    Wenzlawski, A.
    Arnold, S.
    Becker, D.
    Bongs, K.
    Dittus, H.
    Duncker, H.
    Gaaloul, N.
    Gherasim, C.
    Giese, E.
    Grzeschik, C.
    Haensch, T. W.
    Hellmig, O.
    Herr, W.
    Herrmann, S.
    Kajari, E.
    Kleinert, S.
    Laemmerzahl, C.
    Lewoczko-Adamczyk, W.
    Malcolm, J.
    Meyer, N.
    Nolte, R.
    Peters, A.
    Popp, M.
    Reichel, J.
    Roura, A.
    Rudolph, J.
    Schiemangk, M.
    Schneider, M.
    Seidel, S. T.
    Sengstock, K.
    Tamma, V.
    Valenzuela, T.
    Vogel, A.
    Walser, R.
    Wendrich, T.
    Windpassinger, P.
    Zeller, W.
    van Zoest, T.
    Ertmer, W.
    Schleich, W. P.
    Rasel, E. M.
    PHYSICAL REVIEW LETTERS, 2013, 110 (09)
  • [5] Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions
    Grond, Julian
    Hohenester, Ulrich
    Mazets, Igor
    Schmiedmayer, Joerg
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [6] Atom interferometry with Bose-Einstein condensates in a double-well potential
    Shin, Y
    Saba, M
    Pasquini, TA
    Ketterle, W
    Pritchard, DE
    Leanhardt, AE
    PHYSICAL REVIEW LETTERS, 2004, 92 (05) : 4
  • [7] Atom optics with Bose-Einstein condensates
    Burger, S
    Bongs, K
    Sengstock, K
    Ertmer, W
    BOSE-EINSTEIN CONDENSATES AND ATOM LASERS, 2000, : 97 - 115
  • [8] Atom optics with Bose-Einstein condensates
    Bongs, K., 2000, IEEE, Piscataway, NJ, United States
  • [9] Interferometry with independently prepared Bose-Einstein condensates
    Wasak, T.
    Szankowski, P.
    Chwedenczuk, J.
    PHYSICAL REVIEW A, 2015, 91 (04)
  • [10] Atomic interactions in precision interferometry using Bose-Einstein condensates
    Jamison, Alan O.
    Kutz, J. Nathan
    Gupta, Subhadeep
    PHYSICAL REVIEW A, 2011, 84 (04):