Interferometry with Bose-Einstein Condensates in Microgravity

被引:293
|
作者
Muentinga, H. [1 ]
Ahlers, H. [2 ]
Krutzik, M. [3 ]
Wenzlawski, A. [4 ]
Arnold, S. [5 ,6 ]
Becker, D. [2 ]
Bongs, K. [7 ]
Dittus, H. [8 ]
Duncker, H. [4 ]
Gaaloul, N. [2 ]
Gherasim, C. [9 ]
Giese, E. [5 ,6 ]
Grzeschik, C. [3 ]
Haensch, T. W. [10 ,11 ]
Hellmig, O. [4 ]
Herr, W. [2 ]
Herrmann, S. [1 ]
Kajari, E. [5 ,6 ,12 ]
Kleinert, S. [5 ,6 ]
Laemmerzahl, C. [1 ]
Lewoczko-Adamczyk, W. [3 ]
Malcolm, J. [7 ]
Meyer, N. [7 ]
Nolte, R. [9 ]
Peters, A. [3 ,13 ]
Popp, M. [2 ]
Reichel, J. [14 ]
Roura, A. [5 ,6 ]
Rudolph, J. [2 ]
Schiemangk, M. [3 ,13 ]
Schneider, M. [9 ]
Seidel, S. T. [2 ]
Sengstock, K. [4 ]
Tamma, V. [5 ,6 ]
Valenzuela, T. [7 ]
Vogel, A. [4 ]
Walser, R. [9 ]
Wendrich, T. [2 ]
Windpassinger, P. [4 ]
Zeller, W. [5 ,6 ]
van Zoest, T. [8 ]
Ertmer, W. [2 ]
Schleich, W. P. [5 ,6 ]
Rasel, E. M. [2 ]
机构
[1] Univ Bremen, ZARM, D-28359 Bremen, Germany
[2] Leibniz Univ Hannover, Inst Quantenopt, D-30167 Hannover, Germany
[3] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[4] Univ Hamburg, Inst Laser Phys, D-22761 Hamburg, Germany
[5] Univ Ulm, Inst Quantenphys, D-89081 Ulm, Germany
[6] Univ Ulm, Ctr Integrated Quantum Sci & Technol IQST, D-89081 Ulm, Germany
[7] Midlands Ultracold Atom Res Ctr, Birmingham B15 2TT, W Midlands, England
[8] DLR Inst Raumfahrtsyst, D-28359 Bremen, Germany
[9] Tech Univ Darmstadt, Inst Angew Phys, D-64289 Darmstadt, Germany
[10] Max Planck Inst Quantum Opt, D-80799 Munich, Germany
[11] Univ Munich, Fak Phys, D-80799 Munich, Germany
[12] Univ Saarland, D-66041 Saarbrucken, Germany
[13] Leibniz Inst Hochstfrequenztech, Ferdinand Braun Inst, D-12489 Berlin, Germany
[14] ENS UPMC Paris 6 CNRS, Lab Kastler Brossel, F-75005 Paris, France
关键词
MATTER-WAVE INTERFEROMETRY; COOLING ATOMS; NOBEL LECTURE; CHIP; OPTICS;
D O I
10.1103/PhysRevLett.110.093602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Because of their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this Letter we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in micro-gravity. The resulting interference pattern is similar to the one in the far field of a double slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity. DOI: 10.1103/PhysRevLett.110.093602
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Bose-Einstein condensates in microgravity
    Vogel, A.
    Schmidt, M.
    Sengstock, K.
    Bongs, K.
    Lewoczko, W.
    Schuldt, T.
    Peters, A.
    Van Zoest, T.
    Ertmer, W.
    Rasel, E.
    Steinmetz, T.
    Reichel, J.
    Koenemann, T.
    Brinkmann, W.
    Goeklue, E.
    Laemmerzahl, C.
    Dittus, H. J.
    Nandi, G.
    Schleich, W. P.
    Walser, R.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 84 (04): : 663 - 671
  • [2] Nonlinear interferometry with Bose-Einstein condensates
    Tacla, Alexandre B.
    Boixo, Sergio
    Datta, Animesh
    Shaji, Anil
    Caves, Carlton M.
    [J]. PHYSICAL REVIEW A, 2010, 82 (05):
  • [3] Precision interferometry with Bose-Einstein condensates
    Gaaloul, N.
    Hartwig, J.
    Schubert, C.
    Ertmer, W.
    Rasel, E. M.
    [J]. ATOM INTERFEROMETRY, 2014, 188 : 657 - 689
  • [4] Shell potentials for microgravity Bose-Einstein condensates
    Lundblad, N.
    Carollo, R. A.
    Lannert, C.
    Gold, M. J.
    Jiang, X.
    Paseltiner, D.
    Sergay, N.
    Aveline, D. C.
    [J]. NPJ MICROGRAVITY, 2019, 5 (1)
  • [5] Interferometry with independently prepared Bose-Einstein condensates
    Wasak, T.
    Szankowski, P.
    Chwedenczuk, J.
    [J]. PHYSICAL REVIEW A, 2015, 91 (04)
  • [6] All-Optical Bose-Einstein Condensates in Microgravity
    Condon, G.
    Rabault, M.
    Barrett, B.
    Chichet, L.
    Arguel, R.
    Eneriz-Imaz, H.
    Naik, D.
    Bertoldi, A.
    Battelier, B.
    Bouyer, P.
    Landragin, A.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (24)
  • [7] Spin-Mixing Interferometry with Bose-Einstein Condensates
    Gabbrielli, Marco
    Pezze, Luca
    Smerzi, Augusto
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (16)
  • [8] Spatiotemporal interferometry for trapped atomic Bose-Einstein condensates
    Choi, S
    Burnett, K
    Friesch, OM
    Kneer, B
    Schleich, WP
    [J]. PHYSICAL REVIEW A, 2001, 63 (06): : 4
  • [9] Interferometry in an Atomic Fountain with Ytterbium Bose-Einstein Condensates
    Gochnauer, Daniel
    Rahman, Tahiyat
    Wirth-Singh, Anna
    Gupta, Subhadeep
    [J]. ATOMS, 2021, 9 (03)
  • [10] Bose–Einstein condensates in microgravity
    A. Vogel
    M. Schmidt
    K. Sengstock
    K. Bongs
    W. Lewoczko
    T. Schuldt
    A. Peters
    T. Van Zoest
    W. Ertmer
    E. Rasel
    T. Steinmetz
    J. Reichel
    T. Könemann
    W. Brinkmann
    E. Göklü
    C. Lämmerzahl
    H.J. Dittus
    G. Nandi
    W.P. Schleich
    R. Walser
    [J]. Applied Physics B, 2006, 84 : 663 - 671