A stochastic approach to a new type of parabolic variational inequalities

被引:5
|
作者
Nie, Tianyang [1 ,2 ,3 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Univ Bretagne Occidentale, Math Lab, F-29285 Brest 3, France
[3] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
forward-backward stochastic differential equations; variational inequalities; subdifferential operators; viscosity solutions; PARTIAL-DIFFERENTIAL-EQUATIONS; VISCOSITY SOLUTIONS; BACKWARD SDES; PDES;
D O I
10.1080/17442508.2014.989396
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following quasilinear partial differential equation with two subdifferential operators: { partial derivative u/partial derivative s (s, x) + (Lu)(s, x, u(s, x), (del u(s, x))* sigma(s, x, u(s, x))) +f(s, x, u(s, x), (del u(s, x))* sigma (s, x, u(s, x))) is an element of partial derivative phi(u(s, x)) + <partial derivative phi(x), del u(s, x)>, (s, x) is an element of[0, T] X Dom psi, u(T, x) = g(x), x is an element of Dom phi, where for u is an element of C-1,C-2 ([0, T] X Dom phi) and (s, x, y, z) is an element of [0, T] X Dom phi X Dom phi X R-1xd (Lu) (s, x, y, z) : = 1/2 Sigma(n)(i, j=1) (sigma sigma*)(i,j)(s, x, y) partial derivative(2)u/partial derivative x(i)partial derivative x(j) (s, x) + Sigma(n)(i=1) b(i)(s, x, y, z) partial derivative u/partial derivative x(i) (s, x). The operator partial derivative phi (resp. partial derivative phi) is the subdifferential of the convex lower semicontinuous function psi : R-n -> (-infinity, +infinity) (resp. phi : R -> (-infinity, +infinity). We define the viscosity solution for such kind of partial differential equation and prove the uniqueness of the viscosity solution when s does not depend on y. To prove the existence of a viscosity solution, a stochastic representation formula of Feymann-Kac type will be developed. For this end, we investigate a fully coupled forward-backward stochastic variational inequality.
引用
收藏
页码:477 / 517
页数:41
相关论文
共 50 条
  • [31] Confidence regions of stochastic variational inequalities: error bound approach
    Liu, Yongchao
    Zhang, Jin
    OPTIMIZATION, 2022, 71 (07) : 2157 - 2184
  • [32] Backward stochastic dynamics with a subdifferential operator and non-local parabolic variational inequalities
    Bensoussan, Alain
    Li, Yiqun
    Yam, Sheung Chi Phillip
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (02) : 644 - 688
  • [33] STOCHASTIC GAMES AND VARIATIONAL INEQUALITIES
    FRIEDMAN, A
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1973, 51 (05) : 321 - 346
  • [34] Stochastic variational inequalities with jumps
    Zalinescu, Adrian
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 785 - 811
  • [35] NEW FIRST-ORDER ALGORITHMS FOR STOCHASTIC VARIATIONAL INEQUALITIES
    Huang, K. E. V. I. N.
    Zhang, S. H. U. Z. H. O. N. G.
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (04) : 2745 - 2772
  • [36] Boundary optimal control problems for parabolic variational inequalities of bilateral obstacle type
    Peng, Zijia
    Huang, Sheng
    Liu, Zhenhai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)
  • [37] Parabolic Quasi-Variational Inequalities. I: Semimonotone Operator Approach
    Gokieli, Maria
    Kenmochi, Nobuyuki
    Niezgodka, Marek
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (02) : 531 - 558
  • [38] Multi-Valued Parabolic Variational Inequalities and Related Variational-Hemivariational Inequalities
    Carl, Siegfried
    Vy Khoi Le
    ADVANCED NONLINEAR STUDIES, 2014, 14 (03) : 631 - 659
  • [39] On systems of parabolic variational inequalities with multivalued terms
    Carl, Siegfried
    Le, Vy K.
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (02): : 227 - 260
  • [40] A Posteriori Error Estimates for Parabolic Variational Inequalities
    Achdou, Yves
    Hecht, Frederic
    Pommier, David
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 37 (03) : 336 - 366