Powerful embedding networks for few-shot image classification

被引:2
|
作者
Luo, Laigan [1 ]
Zhou, Anan [1 ]
Yi, Benshun [1 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan, Peoples R China
关键词
few-shot; image classification; knowledge distillation; feature fusion; embedding network;
D O I
10.1117/1.JEI.30.6.063009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Few-shot image classification commits to recognizing new concepts from limited annotated samples. Our insight is to obtain a sufficiently powerful embedding network (PEN) to solve few-shot classification tasks. We propose a method to tackle the few-shot classification tasks, namely PENs for few-shot image classification. The key core of PEN is gaining a well-trained embedding network that is capable of extracting strong discriminating representations to represent an image by utilizing two strategies. One strategy is that the multi-scale feature maps are fused instead of only utilizing the final top-level feature maps. We consider that low-level features also play an important role instead of only utilizing top-level representations. Another significant strategy is knowledge distillation (KD). The characteristics of KD can help us get better performance of an embedding network to extract features. Finally, a distance function is employed to classify unlabeled samples. Comprehensive experiments are conducted on few-shot benchmarks. Our method achieves promising performances. The results demonstrate that KD and future fusion are beneficial to gain an expected embedding network for few-shot classification tasks. (C) 2021 SPIE and IS&T
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Deep Few-Shot Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Xuchu
    Yu, Anzhu
    Zhang, Pengqiang
    Wan, Gang
    Wang, Ruirui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2290 - 2304
  • [32] Uncertainty-Aware Few-Shot Image Classification
    Zhang, Zhizheng
    Lan, Cuiling
    Zeng, Wenjun
    Chen, Zhibo
    Chang, Shih-Fu
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3420 - 3426
  • [33] Enhancing Few-Shot Image Classification with Unlabelled Examples
    Bateni, Peyman
    Barber, Jarred
    van de Meent, Jan-Willem
    Wood, Frank
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1597 - 1606
  • [34] CONTRASTIVE REPRESENTATION FOR DERMOSCOPY IMAGE FEW-SHOT CLASSIFICATION
    Mo Xuan
    Yang Qiang
    Zhang Xiyi
    Chen Juan
    Wen Quan
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 134 - 137
  • [35] Few-Shot Image Classification via Mutual Distillation
    Zhang, Tianshu
    Dai, Wenwen
    Chen, Zhiyu
    Yang, Sai
    Liu, Fan
    Zheng, Hao
    APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [36] Few-shot learning for skin lesion image classification
    Liu, Xue-Jun
    Li, Kai-li
    Luan, Hai-ying
    Wang, Wen-hui
    Chen, Zhao-yu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 4979 - 4990
  • [37] Enhancement of Few-shot Image Classification Using Eigenimages
    Ko, Jonghyun
    Chung, Wonzoo
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (12) : 4088 - 4097
  • [38] Disentangled Feature Representation for Few-Shot Image Classification
    Cheng, Hao
    Wang, Yufei
    Li, Haoliang
    Kot, Alex C.
    Wen, Bihan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 10422 - 10435
  • [39] Learning to Calibrate Prototypes for Few-Shot Image Classification
    Chenchen Liang
    Chenyi Jiang
    Shidong Wang
    Haofeng Zhang
    Cognitive Computation, 2025, 17 (1)
  • [40] Compound Memory Networks for Few-Shot Video Classification
    Zhu, Linchao
    Yang, Yi
    COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 782 - 797