A Solar Time Based Analog Ensemble Method for Regional Solar Power Forecasting

被引:155
|
作者
Zhang, Xinmin [1 ]
Li, Yuan [2 ,3 ]
Lu, Siyuan [4 ]
Hamann, Hendrik F. [4 ]
Hodge, Bri-Mathias [5 ]
Lehman, Brad [1 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[2] Northeastern Univ, Boston, MA 02115 USA
[3] Sichuan Univ, Dept Elect & Informat Engn, Chengdu 610065, Sichuan, Peoples R China
[4] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[5] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
Solar power forecasting; photovoltaic systems; analog; ensemble; modeling; PREDICTION; MODEL; SYSTEM; PLANTS; OUTPUT;
D O I
10.1109/TSTE.2018.2832634
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a new analog ensemble method for day-ahead regional photovoltaic (PV) power forecasting with hourly resolution. By utilizing open weather forecast and power measurement data, this prediction method is processed within a set of historical data with similar meteorological data (temperature and irradiance), and astronomical date (solar time and earth declination angle). Furthermore, clustering and blending strategies are applied to improve its accuracy in regional PV forecasting. The robustness of the proposed method is demonstrated with three different numerical weather prediction models, the North American mesoscale forecast system, the global forecast system, and the short-range ensemble forecast, for both region level and single site level PV forecasts. Using real measured data, the new forecasting approach is applied to the load zone in Southeastern Massachusetts as a case study. The normalized root mean square error has been reduced by 13.80% to 61.21% when compared with three tested baselines.
引用
收藏
页码:268 / 279
页数:12
相关论文
共 50 条
  • [41] An archived dataset from the ECMWF Ensemble Prediction System for probabilistic solar power forecasting
    Wang, Wenting
    Yang, Dazhi
    Hong, Tao
    Kleissl, Jan
    SOLAR ENERGY, 2022, 248 : 64 - 75
  • [42] An application of the ECMWF Ensemble Prediction System for short-term solar power forecasting
    Sperati, Simone
    Alessandrini, Stefano
    Delle Monache, Luca
    SOLAR ENERGY, 2016, 133 : 437 - 450
  • [43] Ensemble methods for wind and solar power forecasting-A state-of-the-art review
    Ren, Ye
    Suganthan, P. N.
    Srikanth, N.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 50 : 82 - 91
  • [44] An ensemble machine learning-based solar power prediction of meteorological variability conditions to improve accuracy in forecasting
    Ramu, Priyadharshini
    Gangatharan, Sivasankar
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2023, 46 (07) : 737 - 753
  • [45] Concentrated solar power: Ontologies for solar radiation modeling and forecasting
    Piazza, A. (antoninopiazza@hotmail.it), 1600, Springer Verlag (260):
  • [46] Ensemble forecasting of major solar flares: First results
    Guerra, J. A.
    Pulkkinen, A.
    Uritsky, V. M.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2015, 13 (10): : 626 - 642
  • [47] A residual ensemble learning approach for solar irradiance forecasting
    Brahma, Banalaxmi
    Wadhvani, Rajesh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (21) : 33087 - 33109
  • [48] A residual ensemble learning approach for solar irradiance forecasting
    Banalaxmi Brahma
    Rajesh Wadhvani
    Multimedia Tools and Applications, 2023, 82 : 33087 - 33109
  • [49] Solar Irradiation Forecasting Using Ensemble Voting Based on Machine Learning Algorithms
    Solano, Edna S.
    Affonso, Carolina M.
    SUSTAINABILITY, 2023, 15 (10)
  • [50] Solar Irradiance Forecasting Using Dynamic Ensemble Selection
    Santos, Domingos S. de O. Jr Jr
    Neto, Paulo S. G. de Mattos
    de Oliveira, Joao F. L.
    Siqueira, Hugo Valadares
    Barchi, Tathiana Mikamura
    Lima, Aranildo R.
    Madeiro, Francisco
    Dantas, Douglas A. P.
    Converti, Attilio
    Pereira, Alex C.
    de Melo Filho, Jose Bione
    Marinho, Manoel H. N.
    APPLIED SCIENCES-BASEL, 2022, 12 (07):