Integration of Linked Open Data in Collaborative Group Recommender Systems

被引:5
|
作者
Nawi, Rosmamalmi Mat [1 ]
Noah, Shahrul Azman Mohd [1 ]
Zakaria, Lailatul Qadri [1 ]
机构
[1] Natl Univ Malaysia, Ctr Artificial Intelligence Technol, Bangi 43600, Malaysia
关键词
Recommender systems; Open data; Motion pictures; Resource description framework; Tools; TV; Reliability; Group recommender system; linked open data; clustering; k-nearest neighbour; ALGORITHM; DBPEDIA; USER; WEB;
D O I
10.1109/ACCESS.2021.3124939
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A group recommender system (GRS) is a system that collectively recommends items to a group of users based on their preferences. The GRS and the individual RS challenge lies in a very small and incompleteness of user-item ratings. Such incompleteness resulted in the data sparsity problem. The issues of data sparsity in a group negatively affect the quality of recommendations to the group. It occurs due to the inefficient formation of groups, which usually involves individuals with sparse data in their user profiles. Most of the current studies focus on this issue after the formation of groups. However, this study focused before the group formation, based on the intuition that it will be more efficient if the data sparsity at the individual level is addressed before the group formation process takes place. Therefore, applying the approach through Linked Open Data (LOD) technology is proposed to ensure that the data sparsity issues can be overcome before the group formation process is implemented. We proposed a GRS-LOD model. The experimental evaluations relating to the prediction accuracy and recommendation relevancy of the proposed model were implemented on three aspects: comparison with the basic approach or baselines; comparison with the current approaches, and comparison in terms of group size and aggregation strategies. The aggregation strategies used were the Average (AV), Most Pleasure (MP), Average without Misery (AVM), and Least Misery (LM). The metrics for prediction accuracy were based on the RMSE and MAE, whereas for relevancy, precision, recall, and F1-score were considered. The results show that the prediction accuracy and relevancy of the developed model's recommendations is better than the baseline study by adapting the Average (AV) strategy with the individual profile aggregation approach. Meanwhile, for the evaluation in terms of group size, the results show larger group size exhibits better prediction accuracy for the four used aggregation strategies. On the other hand, in terms of recommendation relevancy, the result shows that relevancy decreases with the increase in group size for the MP, AV and AVM strategies.
引用
收藏
页码:150753 / 150767
页数:15
相关论文
共 50 条
  • [21] A fusion collaborative filtering method for sparse data in recommender systems
    Feng, Chenjiao
    Liang, Jiye
    Song, Peng
    Wang, Zhiqiang
    INFORMATION SCIENCES, 2020, 521 : 365 - 379
  • [22] Effects of Data Sparsity on Recommender Systems based on Collaborative Filtering
    Guedes da Silva, Joao Felipe
    de Moura, Natanael Nunes, Jr.
    Caloba, Luiz Pereira
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [23] Enhancing memory-based collaborative filtering for group recommender systems
    Ghazarian, Sarik
    Nematbakhsh, Mohammad Ali
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (07) : 3801 - 3812
  • [24] The Current State of Linked Data-based Recommender Systems
    Mandi, Ahmed Mounaf
    Hadi, Asaad Sabah
    PROCEEDING OF 2021 2ND INFORMATION TECHNOLOGY TO ENHANCE E-LEARNING AND OTHER APPLICATION (IT-ELA 2021), 2021, : 154 - 160
  • [25] Scientific data integration system in the linked open data space
    K. A. Kuznetsov
    Programming and Computer Software, 2013, 39 : 43 - 48
  • [26] Scientific data integration system in the linked open data space
    Kuznetsov, K. A.
    PROGRAMMING AND COMPUTER SOFTWARE, 2013, 39 (01) : 43 - 48
  • [27] Collaborative Factorization for Recommender Systems
    Fan, Chaosheng
    Lan, Yanyan
    Guo, Jiafeng
    Lin, Zuoquan
    Cheng, Xueqi
    SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 949 - 952
  • [28] Recommender Systems and Collaborative Filtering
    Ortega, Fernando
    Gonzalez-Prieto, Angel
    APPLIED SCIENCES-BASEL, 2020, 10 (20):
  • [29] Collaborative tagging in recommender systems
    Ji, Ae-Ttie
    Yeon, Cheol
    Kim, Heung-Nam
    Jo, Geun-Sik
    AI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4830 : 377 - 386
  • [30] Collaborative filtering recommender systems
    Ekstrand M.D.
    Riedl J.T.
    Konstan J.A.
    Foundations and Trends in Human-Computer Interaction, 2010, 4 (02): : 81 - 173