Software/Hardware Co-design for Multi-modal Multi-task Learning in Autonomous Systems

被引:13
|
作者
Hao, Cong [1 ]
Chen, Deming [2 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Univ Illinois, Urbana, IL USA
关键词
D O I
10.1109/AICAS51828.2021.9458577
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimizing the quality of result (QoR) and the quality of service (QoS) of AI-empowered autonomous systems simultaneously is very challenging. First, there are multiple input sources, e.g., multi-modal data from different sensors, requiring diverse data preprocessing, sensor fusion, and feature aggregation. Second, there are multiple tasks that require various AI models to run simultaneously, e.g., perception, localization, and control. Third, the computing and control system is heterogeneous, composed of hardware components with varied features, such as embedded CPUs, GPUs, FPGAs, and dedicated accelerators. Therefore, autonomous systems essentially require multi-modal multi-task (MMMT) learning which must be aware of hardware performance and implementation strategies. While MMMT learning has been attracting intensive research interests, its applications in autonomous systems are still underexplored. In this paper, we first discuss the opportunities of applying MMMT techniques in autonomous systems, and then discuss the unique challenges that must be solved. In addition, we discuss the necessity and opportunities of MMMT model and hardware co-design, which is critical for autonomous systems especially with power/resource-limited or heterogeneous platforms. We formulate the MMMT model and heterogeneous hardware implementation co-design as a differentiable optimization problem, with the objective of improving the solution quality and reducing the overall power consumption and critical path latency. We advocate for further explorations of MMMT in autonomous systems and software/hardware co-design solutions.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Multi-task Multi-modal Models for Collective Anomaly Detection
    Ide, Tsuyoshi
    Phan, Dzung T.
    Kalagnanam, Jayant
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 177 - 186
  • [22] Multi-modal multi-task feature fusion for RGBT tracking
    Cai, Yujue
    Sui, Xiubao
    Gu, Guohua
    INFORMATION FUSION, 2023, 97
  • [23] Fake News Detection in Social Media based on Multi-Modal Multi-Task Learning
    Cui, Xinyu
    Li, Yang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (07) : 912 - 918
  • [24] Multi-Task Federated Split Learning Across Multi-Modal Data with Privacy Preservation
    Dong, Yipeng
    Luo, Wei
    Wang, Xiangyang
    Zhang, Lei
    Xu, Lin
    Zhou, Zehao
    Wang, Lulu
    SENSORS, 2025, 25 (01)
  • [25] MmAP : Multi-Modal Alignment Prompt for Cross-Domain Multi-Task Learning
    Xin, Yi
    Du, Junlong
    Wang, Qiang
    Yan, Ke
    Ding, Shouhong
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 16076 - 16084
  • [26] Cloud Type Classification Using Multi-modal Information Based on Multi-task Learning
    Zhang, Yaxiu
    Xie, Jiazu
    He, Di
    Dong, Qing
    Zhang, Jiafeng
    Zhang, Zhong
    Liu, Shuang
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 119 - 125
  • [27] MBFusion: Multi-modal balanced fusion and multi-task learning for cancer diagnosis and prognosis
    Zhang, Ziye
    Yin, Wendong
    Wang, Shijin
    Zheng, Xiaorou
    Dong, Shoubin
    Computers in Biology and Medicine, 2024, 181
  • [28] Align vision-language semantics by multi-task learning for multi-modal summarization
    Cui C.
    Liang X.
    Wu S.
    Li Z.
    Neural Computing and Applications, 2024, 36 (25) : 15653 - 15666
  • [29] Multi-modal information fusion for multi-task end-to-end behavior prediction in autonomous driving
    Guo, Baicang
    Liu, Hao
    Yang, Xiao
    Cao, Yuan
    Jin, Lisheng
    Wang, Yinlin
    NEUROCOMPUTING, 2025, 634
  • [30] Enforcing schedulability of multi-task systems by hardware-software codesign
    Shin, Y
    Choi, K
    PROCEEDINGS OF THE FIFTH INTERNATIONAL WORKSHOP ON HARDWARE/SOFTWARE CODESIGN (CODES/CASHE '97), 1997, : 3 - 7