On approximation by Blackman- and Rogosinski-type operators in Banach space
被引:2
|
作者:
Kivinukk, Andi
论文数: 0引用数: 0
h-index: 0
机构:
Tallinn Univ, Sch Digital Technol, Narva Mnt 25, EE-10120 Tallinn, EstoniaTallinn Univ, Sch Digital Technol, Narva Mnt 25, EE-10120 Tallinn, Estonia
Kivinukk, Andi
[1
]
Saksa, Anna
论文数: 0引用数: 0
h-index: 0
机构:
Tallinn Univ, Sch Digital Technol, Narva Mnt 25, EE-10120 Tallinn, EstoniaTallinn Univ, Sch Digital Technol, Narva Mnt 25, EE-10120 Tallinn, Estonia
Saksa, Anna
[1
]
机构:
[1] Tallinn Univ, Sch Digital Technol, Narva Mnt 25, EE-10120 Tallinn, Estonia
cosine operator function;
Blackman;
and Rogosinski-type approximation processes;
modulus of continuity;
D O I:
10.3176/proc.2016.3.01
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In this paper we introduce the Blackman- and Rogosinski-type approximation processes in an abstract Banach space setting. Historical roots of these processes go back to W. W. Rogosinski in 1926. The new definitions given use the concept of cosine operator functions. We proved that in the presented setting the Blackman- and Rogosinski-type operators possess the order of approximation, which coincides with results known in trigonometric approximation. Applications for the Fourier Chebyshev approximation are given as well.