Symmetric and non-symmetric controllers for symmetric systems

被引:0
|
作者
Ikeda, M [1 ]
Zhai, GS
Miki, K
机构
[1] Osaka Univ, Grad Sch Engn, Osaka 5650871, Japan
[2] Wakayama Univ, Fac Syst Engn, Wakayama 6408510, Japan
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with control of symmetric systems. The term "symmetric" means that the transfer function matrix describing a system is symmetric. For control of symmetric systems, it may seem suitable to use symmetric controllers. This paper shows in the context of H-infinity control that it is true if no constraint is imposed on the orders of controllers, but it is not true if the orders of controllers are specified to be lower than that of the system to be controlled.
引用
收藏
页码:301 / 304
页数:4
相关论文
共 50 条
  • [21] Symmetric and non-symmetric chiral liquid crystal dimers
    Donaldson, T.
    Staesche, H.
    Lu, Z. B.
    Henderson, P. A.
    Achard, M. F.
    Imrie, C. T.
    LIQUID CRYSTALS, 2010, 37 (08) : 1097 - 1110
  • [22] Symmetric And Non-Symmetric Muonic Helium Atoms Studies
    Mohammadi, S.
    FRONTIERS IN NUCLEAR STRUCTURE, ASTROPHYSICS, AND REACTIONS (FINUSTAR 3), 2011, 1377 : 398 - 401
  • [23] Soliton dynamics in symmetric and non-symmetric complex potentials
    Kominis, Yannis
    OPTICS COMMUNICATIONS, 2015, 334 : 265 - 272
  • [24] Symmetric Jack polynomials from non-symmetric theory
    T. H. Baker
    P. J. Forrester
    Annals of Combinatorics, 1999, 3 (2-4) : 159 - 170
  • [25] CONJOINED TWINS - SYMMETRIC AND NON-SYMMETRIC (PARASITIC) FORMS
    WERNER, JP
    BOHM, N
    HELWIG, H
    SCHROTER, W
    KLINISCHE PADIATRIE, 1978, 190 (04): : 365 - 371
  • [26] Hybrid Reduction of Non-Symmetric MIMO Systems
    Stoev, Julian
    Mohring, Jan
    PROCEEDINGS OF ISMA2010 - INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING INCLUDING USD2010, 2010, : 3859 - 3872
  • [27] A note on the cross Gramian for non-symmetric systems
    Himpe, Christian
    Ohlberger, Mario
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2016, 4 (01): : 199 - 208
  • [28] On a class of non-symmetric diffusions containing fully non-symmetric distorted Brownian motions
    Trutnau, G
    FORUM MATHEMATICUM, 2003, 15 (03) : 409 - 437
  • [29] On non-symmetric commutative association schemes with exactly one pair of non-symmetric relations
    Chia, G. L.
    Kok, W. K.
    DISCRETE MATHEMATICS, 2006, 306 (24) : 3189 - 3222
  • [30] Symmetric and non-symmetric anthracen-diyl bis(alkylidynes)
    Frogley, Benjamin J.
    Hill, Anthony F.
    Welsh, Steven S.
    DALTON TRANSACTIONS, 2021, 50 (43) : 15502 - 15523