Minimum noiseless description length (MNDL) thresholding

被引:2
|
作者
Fakhrzadeh, Azadeh [1 ]
Beheshti, Soosan [1 ]
机构
[1] Ryerson Univ, Dept Elect & Comp Engn, Toronto, ON, Canada
关键词
D O I
10.1109/CIISP.2007.369308
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new thresholding approach for data denoising is presented. The approach is based minimum noiseless description length (MNDL), a new method for optimum sub-space selection in data representation. By using the observed noisy data, this information theoretic approach provides the optimum threshold that minimizes the description length of the noiseless signal. Comparison of the new method with the existing thresholding methods is provided.
引用
收藏
页码:146 / 150
页数:5
相关论文
共 50 条
  • [21] Minimum description length shape and appearance models
    Thodberg, HH
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2003, 2732 : 51 - 62
  • [22] Model selection based on minimum description length
    Grünwald, P
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2000, 44 (01) : 133 - 152
  • [23] Model selection and the principle of minimum description length
    Hansen, MH
    Yu, B
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) : 746 - 774
  • [24] Minimum description length, regularization, and multimodal data
    Rohwer, R
    vanderRest, JC
    NEURAL COMPUTATION, 1996, 8 (03) : 595 - 609
  • [25] Minimum description length method for facet matching
    Maybank, S
    Fraile, R
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2000, 14 (07) : 919 - 927
  • [26] Information Geometry and Minimum Description Length Networks
    Sun, Ke
    Wang, Jun
    Kalousis, Alexandros
    Marchand-Maillet, Stephane
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 49 - 58
  • [27] Image segmentation based on minimum description length
    Wen, FR
    Yuan, BZ
    Tang, XF
    2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 749 - 752
  • [28] OPTIMAL NETWORK CONSTRUCTION BY MINIMUM DESCRIPTION LENGTH
    KENDALL, GD
    HALL, TJ
    NEURAL COMPUTATION, 1993, 5 (02) : 210 - 212
  • [29] Histograms based on the minimum description length principle
    Wang, Hai
    Sevcik, Kenneth C.
    VLDB JOURNAL, 2008, 17 (03): : 419 - 442
  • [30] A first look at the minimum description length principle
    Grunwald, Peter D.
    INTELLIGENT ALGORITHMS IN AMBIENT AND BIOMEDICAL COMPUTING, 2006, 7 : 187 - 213