Reducibility, Lyapunov Exponent, Pure Point Spectra Property for Quasi-periodic Wave Operator

被引:1
|
作者
Li, Jing [1 ,2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2020年 / 24卷 / 02期
基金
中国国家自然科学基金;
关键词
reducibility; quasi-periodic wave operator; KAM theory; finitely smooth; Lyapunov exponent; pure-point spectrum; QUANTUM HARMONIC-OSCILLATOR; SCHRODINGER-EQUATIONS; UNBOUNDED PERTURBATIONS; KAM; LOCALIZATION; GROWTH;
D O I
10.11650/tjm/190505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, it is shown that the linear wave equation subject to Dirichlet boundary condition u(tt) - u(xx) + epsilon V (wt, x)u = 0, u(t, -pi) = u(t, pi) = 0 can be changed by a symplectic transformation into v(tt) - v(xx) + epsilon M(xi)v = 0, v(t, -pi) = v(t, pi) = 0, where V is finitely smooth and time-quasi-periodic potential with frequency omega is an element of R-n in some Cantor set of positive Lebeague measure and where M-xi is a Fourier multiplier. Moreover, it is proved that the corresponding wave operator at partial derivative(2)(t) - partial derivative(2)(x) + epsilon V (omega t, x) possesses the property of pure point spectra and zero Lyapunov exponent.
引用
收藏
页码:377 / 411
页数:35
相关论文
共 50 条