On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrodinger operator.

被引:0
|
作者
Fabbri, R
机构
[1] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
[2] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the Lyapunov exponent beta(E) for the one-dimensional Schrodinger operator with a quasi-periodic potential. Let Gamma subset of R-k be the set of frequency vectors whose components are rationally independent. Let 0 less than or equal to r < 1, and consider the complement in Gamma x C-r(T-k) of the set D where exponential dichotomy holds. We show that beta = 0 is generic in this complement. The methods and techniques used are based on the concepts of rotation number and exponential dichotomy.
引用
收藏
页码:149 / 161
页数:13
相关论文
共 50 条