Sentiment Analysis Using Machine Learning Algorithms

被引:8
|
作者
Jemai, Fatma [1 ]
Hayouni, Mohamed [2 ]
Baccar, Sahbi [3 ]
机构
[1] Univ Jendouba, Higher Inst Comp Sci KEF, Kef, Tunisia
[2] Univ Carthage, Innovcom Res Lab, Higher Sch Commun Sup Com, Ariana, Tunisia
[3] CESI Grad Sch Engn, Rouen, France
关键词
Machine Learning (ML); NLTK; Sentiment analysis(SA);
D O I
10.1109/IWCMC51323.2021.9498965
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This work aims at building a classifier able of predicting the polarity of a comment while using Machine Learning (ML) algorithms. Our work is essentially divided into three tasks: data extraction, processing and modelling. In order to build our model, we use the NLTK dataset. Then, we use text mining techniques to generate and process the variables. Based on a supervised probabilistic machine learning algorithm, we tended to create a classifier to classify our tweets into positive and negative sentiments then we opt for two experiments to evaluate the performance of our model. Compered to previous reported works, we achieve greater precision.
引用
收藏
页码:775 / 779
页数:5
相关论文
共 50 条
  • [41] Twitter Sentiment Analysis Using Machine Learning Techniques
    Le, Bac
    Huy Nguyen
    [J]. ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING, 2015, 358 : 279 - 289
  • [42] Optimization of sentiment analysis using machine learning classifiers
    Singh, Jaspreet
    Singh, Gurvinder
    Singh, Rajinder
    [J]. HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2017, 7
  • [43] Investigating sentiment analysis using machine learning approach
    Sankar, H.
    Subramaniyaswamy, V
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2017), 2017, : 87 - 92
  • [44] Sentiment Analysis using Machine Learning for Business Intelligence
    Chaturvedi, Saumya
    Mishra, Vimal
    Mishra, Nitin
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON POWER, CONTROL, SIGNALS AND INSTRUMENTATION ENGINEERING (ICPCSI), 2017, : 2162 - 2166
  • [45] A Survey on Sentiment Analysis by using Machine Learning Methods
    Yang, Peng
    Chen, Yunfang
    [J]. PROCEEDINGS OF 2017 IEEE 2ND INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2017, : 117 - 121
  • [46] Sentiment Analysis in Twitter using Machine Learning Techniques
    Neethu, M. S.
    Rajasree, R.
    [J]. 2013 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND NETWORKING TECHNOLOGIES (ICCCNT), 2013,
  • [47] Arabic sentiment analysis of Monkeypox using deep neural network and optimized hyperparameters of machine learning algorithms
    Gharaibeh, Hasan
    Al Mamlook, Rabia Emhamed
    Samara, Ghassan
    Nasayreh, Ahmad
    Smadi, Saja
    Nahar, Khalid M. O.
    Aljaidi, Mohammad
    Al-Daoud, Essam
    Gharaibeh, Mohammad
    Abualigah, Laith
    [J]. SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)
  • [48] Arabic sentiment analysis of Monkeypox using deep neural network and optimized hyperparameters of machine learning algorithms
    Hasan Gharaibeh
    Rabia Emhamed Al Mamlook
    Ghassan Samara
    Ahmad Nasayreh
    Saja Smadi
    Khalid M. O. Nahar
    Mohammad Aljaidi
    Essam Al-Daoud
    Mohammad Gharaibeh
    Laith Abualigah
    [J]. Social Network Analysis and Mining, 14
  • [49] Design of text sentiment analysis tool using feature extraction based on fusing machine learning algorithms
    Ajitha, P.
    Sivasangari, A.
    Rajkumar, R. Immanuel
    Poonguzhali, S.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (04) : 6375 - 6383
  • [50] Forecasting Bitcoin returns using machine learning algorithms: impact of investor sentiment
    Ben Hamadou, Fatma
    Mezghani, Taicir
    Zouari, Ramzi
    Boujelbene-Abbes, Mouna
    [J]. EUROMED JOURNAL OF BUSINESS, 2023,