Massive-Scale Gaze Analytics Exploiting High Performance Computing

被引:0
|
作者
Duchowski, Andrew T. [1 ]
Bolte, Takumi [1 ]
Krejtz, Krzysztof [2 ]
机构
[1] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[2] Univ Social Sci & Human, Natl Informat Proc Inst, Warsaw, Poland
来源
INTELLIGENT DECISION TECHNOLOGIES | 2015年 / 39卷
关键词
High-performance computing; Eye tracking; Gaze analytics; DIFFERENTIATION;
D O I
10.1007/978-3-319-19857-6_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Methods for parallelized eye movement analysis on a cluster are detailed. The distributed approach advocates the single-core job programming strategy, assigning processing of eye movement data across as many cluster cores as are available. A foreman-worker distribution algorithm takes care of job assignment via the Message Passing Interface (MPI) available on most high-performance computing clusters. Two versions of the MPI algorithm are presented, the first a straightforward implementation that assumes faultless operation, the second a more fault-tolerant revision that gives nodes an opportunity of communicating failure. Job scheduling is also briefly explained.
引用
收藏
页码:137 / 147
页数:11
相关论文
共 50 条
  • [31] Massive-scale complicated human action recognition: Theory and applications
    Liu, Yishu
    Zhang, Qi
    Chen, Weixiong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 125 : 806 - 811
  • [32] Massive-Scale I/Q Datasets for WiFi Radio Fingerprinting
    Al-shawabka, Amani
    Restuccia, Francesco
    D'Oro, Salvatore
    Melodia, Tommaso
    COMPUTER NETWORKS, 2020, 182
  • [33] Massive Contingency Analysis with High Performance Computing
    Huang, Zhenyu
    Chen, Yousu
    Nieplocha, Jarek
    2009 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-8, 2009, : 3026 - 3033
  • [34] Parallel Subtrajectory Alignment over Massive-Scale Trajectory Data
    Chen, Lisi
    Shang, Shuo
    Feng, Shanshan
    Kalnis, Panos
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3613 - 3619
  • [35] Detecting Moving Object Outliers In Massive-Scale Trajectory Streams
    Yu, Yanwei
    Cao, Lei
    Wang, Qin
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 422 - 431
  • [36] Mobile RF Scenario Design for Massive-Scale Wireless Channel Emulators
    Rusca, Riccardo
    Raviglione, Francesco
    Casetti, Claudio
    Giaccone, Paolo
    Restuccia, Francesco
    2023 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT, 2023, : 675 - 680
  • [37] Massive-scale data management using standards-based solutions
    Shiers, J
    INFORMATION-BASED ACCESS TO STORAGE: THE FOUNDATION OF INFORMATION SYSTEMS, PROCEEDINGS, 1999, : 1 - 10
  • [38] From Low-Scale to Collaborative, Gamified and Massive-Scale Courses: Redesigning a MOOC
    Ortega-Arranz, Alejandro
    Sanz-Martinez, Luisa
    Alvarez-Alvare, Susana
    Munoz-Cristobal, Juan A.
    Bote-Lorenzo, Miguel L.
    Martinez-Mones, Alejandra
    Dimitriadis, Yannis
    DIGITAL EDUCATION: OUT TO THE WORLD AND BACK TO THE CAMPUS, 2017, 10254 : 77 - 87
  • [39] Toward Efficient Navigation of Massive-Scale Geo-Textual Streams
    Yang, Chengcheng
    Chen, Lisi
    Shang, Shuo
    Zhu, Fan
    Liu, Li
    Shao, Ling
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4838 - 4845
  • [40] Stem cell transcriptome profiling via massive-scale mRNA sequencing
    Nicole Cloonan
    Alistair R R Forrest
    Gabriel Kolle
    Brooke B A Gardiner
    Geoffrey J Faulkner
    Mellissa K Brown
    Darrin F Taylor
    Anita L Steptoe
    Shivangi Wani
    Graeme Bethel
    Alan J Robertson
    Andrew C Perkins
    Stephen J Bruce
    Clarence C Lee
    Swati S Ranade
    Heather E Peckham
    Jonathan M Manning
    Kevin J McKernan
    Sean M Grimmond
    Nature Methods, 2008, 5 : 613 - 619