Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning

被引:75
|
作者
Xu, Qifa [1 ,2 ]
Lu, Shixiang [1 ]
Jia, Weiyin [3 ]
Jiang, Cuixia [1 ]
机构
[1] Hefei Univ Technol, Sch Management, Hefei 230009, Anhui, Peoples R China
[2] Minist Educ, Key Lab Proc Optimizat & Intelligent Decis Making, Hefei 230009, Anhui, Peoples R China
[3] Anhui Ronds Sci & Technol Inc Co, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
Rotating machinery; Fault diagnosis; Imbalanced classification; Feature extraction; Cost-sensitive learning; DATA-DRIVEN; NEURAL-NETWORK; CLASSIFICATION; BEARINGS; DESIGN; SMOTE;
D O I
10.1007/s10845-019-01522-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fault diagnosis plays an essential role in rotating machinery manufacturing systems to reduce their maintenance costs. How to improve diagnosis accuracy remains an open issue. To this end, we develop a novel framework through combined use of multi-domain vibration feature extraction, feature selection and cost-sensitive learning method. First, we extract time-domain, frequency-domain, and time-frequency-domain features to make full use of vibration signals. Second, a feature selection technique is employed to obtain a feature subset with good generalization properties, by simultaneously measuring the relevance and redundancy of features. Third, a cost-sensitive learning method is designed for a classifier to effectively learn the discriminating boundaries, with an extremely imbalanced distribution of fault instances. For illustration, a real-world dataset of rotating machinery collected from an oil refinery in China is utilized. The extensive experiments have demonstrated that our multi-domain feature extraction and feature selection can significantly improve the diagnosis accuracy. Meanwhile, our cost-sensitive learning method consistently outperforms the traditional classifiers such as support vector machine (SVM), gradient boosting decision tree (GBDT), etc., and even better than the classification method calibrated by six popular imbalanced data resampling algorithms, such as the Synthetic Minority Over-sampling Technique (SMOTE) and the Adaptive Synthetic sampling method (ADASYN), in terms of decreasing missed alarms and reducing the average cost. Owing to its high evaluation scores and low average misclassification cost, cost-sensitive GBDT (CS-GBDT) is preferred for imbalanced fault diagnosis in practice.
引用
收藏
页码:1467 / 1481
页数:15
相关论文
共 50 条
  • [11] Categorical Feature GAN for Imbalanced Intelligent Fault Diagnosis of Rotating Machinery
    Dai, Jun
    Wang, Jun
    Yao, Linquan
    Huang, Weiguo
    Zhu, Zhongkui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [12] A trackable multi-domain collaborative generative adversarial network for rotating machinery fault diagnosis
    Wang, Xin
    Jiang, Hongkai
    Mu, Mingzhe
    Dong, Yutong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [13] Collaborative fault diagnosis of rotating machinery via dual adversarial guided unsupervised multi-domain adaptation network
    Chen, Xingkai
    Shao, Haidong
    Xiao, Yiming
    Yan, Shen
    Cai, Baoping
    Liu, Bin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 198
  • [14] Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
    Jie Liu
    Kaibo Zhou
    Chaoying Yang
    Guoliang Lu
    Frontiers of Mechanical Engineering, 2021, 16 : 829 - 839
  • [15] Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
    Jie LIU
    Kaibo ZHOU
    Chaoying YANG
    Guoliang LU
    Frontiers of Mechanical Engineering, 2021, (04) : 829 - 839
  • [16] Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
    Liu, Jie
    Zhou, Kaibo
    Yang, Chaoying
    Lu, Guoliang
    FRONTIERS OF MECHANICAL ENGINEERING, 2021, 16 (04) : 829 - 839
  • [17] Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features
    Pang, Shan
    Yang, Xinyi
    Zhang, Xiaofeng
    Lin, Xuesen
    ISA TRANSACTIONS, 2020, 98 : 320 - 337
  • [18] Cross-domain fault diagnosis of rotating machinery based on graph feature extraction
    Wang, Pei
    Liu, Jie
    Zhou, Jianzhong
    Duan, Ran
    Jiang, Wei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (02)
  • [19] Knowledge Distillation-Guided Cost-Sensitive Ensemble Learning Framework for Imbalanced Fault Diagnosis
    Deng, Shuaiqing
    Lei, Zihao
    Wen, Guangrui
    Li, Zhaojun Steven
    Zhang, Yongchao
    Feng, Ke
    Chen, Xuefeng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 23110 - 23122
  • [20] A novel imbalanced fault diagnosis method integrated KLFDA with improved cost-sensitive learning ANBSVM
    Jiang, Xue
    Xu, Yuan
    Ke, Wei
    Zhang, Yang
    Zhu, Qunxiong
    He, Yanlin
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 101 (04): : 1943 - 1952