Hybrid Silicon Nanocone-Polymer Solar Cells

被引:386
|
作者
Jeong, Sangmoo [2 ]
Garnett, Erik C. [1 ]
Wang, Shuang [2 ]
Yu, Zongu [2 ]
Fan, Shanhui [2 ]
Brongersma, Mark L. [1 ]
McGehee, Michael D. [1 ]
Cui, Yi [1 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
关键词
Nanotexture; solar cell; heterojunction; conductive polymer; light trapping; NANOWIRE; ABSORPTION; ARRAYS;
D O I
10.1021/nl300713x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 mu m thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm(2), which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution.
引用
收藏
页码:2971 / 2976
页数:6
相关论文
共 50 条
  • [41] Silicon Solar Cells with Vertical p-n Junctions for Hybrid Solar Cells
    Malyutina-Bronskaya, Viktoria V.
    Zalesskii, Valeryi B.
    Konoiko, Aleksey I.
    Malyshev, Victor S.
    2015 16TH INTERNATIONAL CONFERENCE OF YOUNG SPECIALISTS ON MICRO/NANOTECHNOLOGIES AND ELECTRON DEVICES, 2015, : 87 - 89
  • [42] Role of Polymer in Hybrid Polymer/PbS Quantum Dot Solar Cells
    Mastria, Rosanna
    Rizzo, Aurora
    Giansante, Carlo
    Ballarini, Dario
    Dominici, Lorenzo
    Inganaes, Olle
    Gigli, Giuseppe
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (27): : 14972 - 14979
  • [43] Third-generation solar cells: a review and comparison of polymer: fullerene, hybrid polymer and perovskite solar cells
    Yan, Junfeng
    Saunders, Brian R.
    RSC ADVANCES, 2014, 4 (82): : 43286 - 43314
  • [44] Polymer/Metal Oxide Nanocrystals Hybrid Solar Cells
    Li, Shao-Sian
    Lin, Yun-Yue
    Su, Wei-Fang
    Chen, Chun-Wei
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2010, 16 (06) : 1635 - 1640
  • [45] Hybrid polymer solar cells based on zinc oxide
    Beek, WJE
    Wienk, MM
    Janssen, RAJ
    JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (29) : 2985 - 2988
  • [46] Hybrid-nanorod polymer solar cells.
    Alivisatos, AP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U1240 - U1240
  • [47] Polymer-metal-oxide hybrid solar cells
    Li, Shao-Sian
    Chen, Chun-Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (36) : 10574 - 10591
  • [48] Ligand engineering in hybrid polymer:nanocrystal solar cells
    Greaney, Matthew J.
    Brutchey, Richard L.
    MATERIALS TODAY, 2015, 18 (01) : 31 - 38
  • [49] Polymer-carbon nanomaterial hybrid solar cells
    Dai, Liming
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [50] Efficient hybrid polymer/titania solar cells sensitized with carboxylated polymer dye
    Bhongale, Chetan Jagdish
    Thelakkat, Mukundan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (05) : 817 - 822