Probabilistic Graphical Models of Fundamental Diagram Parameters for Simulations of Freeway Traffic

被引:17
|
作者
Muralidharan, Ajith [1 ]
Dervisoglu, Gunes [1 ]
Horowitz, Roberto [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
CAPACITY;
D O I
10.3141/2249-10
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Freeway traffic simulations must account for the probabilistic nature of model parameters to capture observed variations in traffic behavior. Fundamental diagrams specify freeway section parameters describing the flow density relationship in macroscopic simulation models. A triangular fundamental diagram specified with the free-flow speed, congestion wave speed, and capacity is commonly adopted in first-order cell transmission models. Capacity (defined as the maximum flow observed in a given freeway section over a particular day) exhibits significant day-today variation, and capacity variations across different sections of the freeway are significantly correlated. Free-flow speeds do not exhibit significant variation, but congestion wave speeds exhibit variation uncorrelated with section capacities or parameters from other sections. A probabilistic graphical approach is presented to model the probabilistic distribution of fundamental diagram parameters of an entire freeway section chosen for simulation. More than 1 year of data from dozens of loop detectors along a 25-mi section of the I-210 freeway westbound in Los Angeles, California, are used for demonstration. The parameters of the distribution are estimated with the expectation-maximization algorithm to account for missing observations. Model selection from among plausible models indicates that a first-order spatial Markov model is appropriate to capture the capacity distribution, which is the joint probability distribution of freeway section capacities. Stochastic simulations with sampled parameters demonstrate that capacity variations can lead to significant variations in congestion patterns and freeway performance.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 50 条
  • [41] Recent Advances in Probabilistic Graphical Models
    Bielza, Concha
    Moral, Serafin
    Salmeron, Antonio
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2015, 30 (03) : 207 - 208
  • [42] Value Symmetries in Probabilistic Graphical Models
    Madan, Gagan
    Anand, Ankit
    Mausam, Mausam
    Singla, Parag
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 886 - 895
  • [43] Probabilistic reasoning with graphical security models
    Kordy, Barbara
    Pouly, Marc
    Schweitzer, Patrick
    INFORMATION SCIENCES, 2016, 342 : 111 - 131
  • [44] Getting started in probabilistic graphical models
    Airoldi, Edoardo M.
    PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (12) : 2421 - 2425
  • [45] A Discrete Regularization for Probabilistic Graphical Models
    Kriukova, Galyna
    7TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2018), 2018, 2037
  • [46] Probabilistic graphical models in artificial intelligence
    Larranaga, P.
    Moral, S.
    APPLIED SOFT COMPUTING, 2011, 11 (02) : 1511 - 1528
  • [47] Order Statistics for Probabilistic Graphical Models
    Smith, David
    Rouhani, Sara
    Gogate, Vibhav
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4625 - 4631
  • [48] Approximate Implication for Probabilistic Graphical Models
    Kenig, Batya
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2025, 82 : 1 - 37
  • [49] Probabilistic Graphical Models for Statistical Matching
    Endres, Eva
    Augustin, Thomas
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS (ISIPTA '15), 2015, : 340 - 340
  • [50] Incident indicators for freeway traffic flow models
    Dabiri, Azita
    Kulcsar, Balazs
    COMMUNICATIONS IN TRANSPORTATION RESEARCH, 2022, 2