A novel room-temperature formaldehyde gas sensor based on walnut-like WO3 modification on Ni-graphene composites

被引:7
|
作者
Mehmood, Shahid [1 ]
Khan, Faheem Ullah [1 ]
Shah, Muhmmad Naeem [1 ]
Ma, Junxian [1 ]
Yang, Yatao [1 ]
Li, Guijun [2 ]
Xu, Wei [1 ,3 ]
Zhao, Xiaojin [1 ]
He, Wei [1 ]
Pan, Xiaofang [1 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelctron Engn, Key Labortary Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen, Peoples R China
[3] Huazhong Univ Sci & Technol, Wuhan, Peoples R China
来源
FRONTIERS IN CHEMISTRY | 2022年 / 10卷
基金
中国国家自然科学基金;
关键词
WO3-Ni-Gr composite; pn heterojunction-based gas sensors; room-temperature formaldehyde sensor; spill-over effect; long-term stability; SENSING PROPERTIES; FAST-RESPONSE; OXIDE; PERFORMANCE; NANOPARTICLES; ACETONE; NANOCOMPOSITES; PHOTOCATALYST; FRAMEWORK; RECOVERY;
D O I
10.3389/fchem.2022.971859
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ternary composite with great modulation of electron transfers has attracted a lot of attention from the field of high-performance room-temperature (RT) gas sensing. Herein, walnut-like WO3-Ni-graphene ternary composites were successfully synthesized by the hydrothermal method for formaldehyde (HCHO) sensing at RT. The structural and morphological analyses were carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). SEM and TEM studies confirmed that walnut-like WO3 nanostructures with an average size of 53 & PLUSMN; 23 nm were functionalized. The Raman and XPS results revealed that, due to the deformation of the O-W-O lattice, surface oxygen vacancies O-v and surface-adsorbed oxygen species O-c were present. The gas-sensing measurement shows that the response of the WO3-Ni-Gr composite (86.8%) was higher than that of the Ni-Gr composite (22.7%) for 500 ppm HCHO at RT. Gas-sensing enhancement can be attributed to a p-n heterojunction formation between WO3 and Ni-Gr, O-c, spill-over effect of Ni decoration, and a special walnut-like structure. Moreover, long term stability (%R = 61.41 & PLUSMN; 1.66) for 30 days and high selectivity in the presence of other gases against HCHO suggested that the proposed sensor could be an ideal candidate for future commercial HCHO-sensing in a real environment.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Hierarchical Pt/WO3 nanoflakes assembled hollow microspheres for room-temperature formaldehyde oxidation activity
    Le, Yao
    Qi, Lifang
    Wang, Chao
    Song, Shaoxian
    APPLIED SURFACE SCIENCE, 2020, 512
  • [12] Room-temperature volatile organic compounds sensing based on WO3•0.33H2O, hexagonal-WO3, and their reduced graphene oxide composites
    Perfecto, T. M.
    Zito, C. A.
    Volanti, D. P.
    RSC ADVANCES, 2016, 6 (107): : 105171 - 105179
  • [13] Superior triethylamine detection at room temperature by {-112} faceted WO3 gas sensor
    Gui, Yanghai
    Tian, Kuan
    Liu, Junxian
    Yang, Lele
    Zhang, Hongzhong
    Wang, Yun
    JOURNAL OF HAZARDOUS MATERIALS, 2019, 380
  • [14] Ammonia Sensor Based on Monoclinic WO3 Nanorods Operating at Room Temperature
    Zhu, Tao
    Yuan, Zhenyu
    Qin, Wenbo
    Gao, Hongliang
    Meng, Fanli
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2021, 20 : 619 - 626
  • [15] A novel room temperature ethanol sensor based on catalytic Fe activated porous WO3 microspheres
    Renitta, A.
    Vijayalakshmi, K.
    CATALYSIS COMMUNICATIONS, 2016, 73 : 58 - 62
  • [16] Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization
    Su, Pi-Guey
    Peng, Yu-Ting
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 193 : 637 - 643
  • [17] A novel method in the gas identification by using WO3 gas sensor based on the temperature-programmed technique
    Zhang, Guozhu
    Xie, Changsheng
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 206 : 220 - 229
  • [18] A room temperature sub-ppm NO2 gas sensor based on WO3 hollow spheres
    Zhao, Jing
    Hu, Mengqing
    Liang, Yan
    Li, Qiulin
    Zhang, Xinye
    Wang, Zhenyu
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (13) : 5064 - 5070
  • [19] The room temperature gas sensor based on Polyaniline@flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection
    Li, Siqi
    Lin, Pengfei
    Zhao, Liupeng
    Wang, Chong
    Liu, Deye
    Liu, Fangmeng
    Sun, Peng
    Liang, Xishuang
    Liu, Fengmin
    Yan, Xu
    Gao, Yuan
    Lu, Geyu
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 259 : 505 - 513
  • [20] A high-performance room-temperature NH3 gas sensor based on WO3/TiO2 nanocrystals decorated with Pt NPs
    Wu, Zhixuan
    Chen, Zhengai
    Deng, Zhixiang
    Dai, Ning
    Sun, Yan
    Ge, Meiying
    RSC ADVANCES, 2024, 14 (17) : 12225 - 12234