The canonical shrinking soliton associated to a Ricci flow

被引:3
|
作者
Cabezas-Rivas, Esther [1 ]
Topping, Peter M. [2 ]
机构
[1] Univ Munster, Math Inst, D-48149 Munster, Germany
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
INEQUALITIES;
D O I
10.1007/s00526-011-0407-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To every Ricci flow on a manifoldMover a time interval I subset of R-, we associate a shrinking Ricci soliton on the space-time M x I. We relate properties of the original Ricci flow to properties of the new higher-dimensional Ricci flow equipped with its own time-parameter. This geometric construction was discovered by consideration of the theory of optimal transportation, and in particular the results of the second author Topping (J Reine Angew Math 636:93-122, 2009), and McCann and the second author ( Am J Math 132:711-730, 2010); we briefly survey the link between these subjects.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [41] Ricci soliton solvmanifolds
    Lauret, Jorge
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 : 1 - 21
  • [42] On the curvature ODE associated to the Ricci flow
    Atreyee Bhattacharya
    Geometriae Dedicata, 2015, 175 : 189 - 209
  • [43] Classification of gradient shrinking Ricci solitons with bounded Ricci curvature
    Yang, Fei
    Wang, Zijun
    Zhang, Liangdi
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 71
  • [44] On the curvature ODE associated to the Ricci flow
    Bhattacharya, Atreyee
    GEOMETRIAE DEDICATA, 2015, 175 (01) : 189 - 209
  • [45] Hyperbolic Ricci soliton and gradient hyperbolic Ricci soliton on relativistic prefect fluid spacetime
    Siddiqi, Mohd. Danish
    Mofarreh, Fatemah
    AIMS MATHEMATICS, 2024, 9 (08): : 21628 - 21640
  • [46] The Kahler-Ricci flow on log canonical pairs of general type
    Li, Chang
    Shen, Liangming
    Zheng, Tao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (04)
  • [47] On κ-solutions and\break canonical neighborhoods in 4d Ricci flow
    Haslhofer, Robert
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (811): : 257 - 265
  • [48] Conical structure for shrinking Ricci solitons
    Munteanu, Ovidiu
    Wang, Jiaping
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (11) : 3377 - 3390
  • [49] RIGIDITY OF GRADIENT SHRINKING RICCI SOLITONS
    Yang, Fei
    Zhang, Liangdi
    ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (04) : 533 - 547
  • [50] Geometry of compact shrinking Ricci solitons
    Chen, Bang Yen
    Deshmukh, Sharief
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2014, 19 (01): : 13 - 21