Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications

被引:84
|
作者
Singh, Randeep [1 ]
Sadeghi, Sadegh [2 ]
Shabani, Bahman [2 ]
机构
[1] Fujikura Automot Europe GmbH, Thermal Engn Div, D-85053 Ingolstadt, Germany
[2] RMIT Univ, Sch Engn, Melbourne, Vic 3083, Australia
关键词
thermal energy storage; phase change material; carbon powder; aluminum fins; carbon fins; thermal conductivity; HEAT-TRANSFER ENHANCEMENT; PERFORMANCE ENHANCEMENT; POLYETHYLENE-GLYCOL; PCM; GRAPHITE; PARAMETERS; STABILITY; DESIGN; SYSTEM; FINS;
D O I
10.3390/en12010075
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Low thermal conductivity is the main drawback of phase change materials (PCMs) that is yet to be fully addressed. This paper studies several efficient, cost-effective, and easy-to-use experimental techniques to enhance thermal conductivity of an organic phase change material used for low-temperature thermal energy storage applications. In such applications, the challenges associated with low thermal conductivity of such organic PCMs are even more pronounced. In this investigation, polyethylene glycol (PEG-1000) is used as PCM. To improve the thermal conductivity of the selected PCM, three techniques including addition of carbon powder, and application of aluminum and graphite fins, are utilized. For measurement of thermal conductivity, two experimental methodsincluding flat and cylindrical configurationsare devised and increments in thermal conductivity are calculated. Melting and solidification processes are analyzed to evaluate melting and solidification zones, and temperature ranges for melting and solidification processes respectively. Furthermore, latent heat of melting is computed under constant values of heat load. Ultimately, specific heat of the PCM in solid state is measured by calorimetry method considering water and methanol as calorimeter fluids. Based on the results, the fin stack can enhance the effective thermal conductivity by more than 40 times with aluminum fins and 33 times with carbon fins. For pure PCM sample, Initiation of melting takes place around 37 degrees C and continues to above 40 degrees C depending on input heat load; and solidification temperature range was found to be 33.6-34.9 degrees C. The investigation will provide a twofold pathway, one to enhance thermal conductivity of PCMs, and secondly relatively easy to set-up' methods to measure properties of pure and enhanced PCMs.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage
    Lin, Yaxue
    Jia, Yuting
    Alva, Guruprasad
    Fang, Guiyin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 2730 - 2742
  • [2] Thermal conductivity enhancement of phase change materials for thermal energy storage: A review
    Liu, Lingkun
    Su, Di
    Tang, Yaojie
    Fang, Guiyin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 62 : 305 - 317
  • [3] Thermal conductivity enhancement on phase change materials for thermal energy storage: A review
    Wu, Shaofei
    Yan, Ting
    Kuai, Zihan
    Pan, Weiguo
    ENERGY STORAGE MATERIALS, 2020, 25 : 251 - 295
  • [4] Thermal conductivity enhancement of phase change materials for thermal energy storage: A review
    Fan, Liwu
    Khodadadi, J. M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01): : 24 - 46
  • [5] Investigation on compatibility and thermal reliability of phase change materials for low-temperature thermal energy storage
    Jaya Krishna Devanuri
    Uma Maheswararao Gaddala
    Vikas Kumar
    Materials for Renewable and Sustainable Energy, 2020, 9
  • [6] Investigation on compatibility and thermal reliability of phase change materials for low-temperature thermal energy storage
    Devanuri, Jaya Krishna
    Gaddala, Uma Maheswararao
    Kumar, Vikas
    MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 2020, 9 (04)
  • [7] Development and thermal characteristics of phase change nanoemulsions for low-temperature thermal energy storage
    Mo, Songping
    Chen, Junhao
    Yu, Yuxin
    Chen, Yufen
    Jia, Lisi
    Chen, Ying
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2024, 161 : 113 - 123
  • [8] Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: a review
    Wang J.-J.
    Xu X.-L.
    Liang K.-Y.
    Wang G.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (01): : 26 - 38
  • [9] Thermal energy storage for low and medium temperature applications using phase change materials - A review
    da Cunha, Jose Pereira
    Eames, Philip
    APPLIED ENERGY, 2016, 177 : 227 - 238
  • [10] THERMAL CHARACTERIZATION OF HIGH TEMPERATURE INORGANIC PHASE CHANGE MATERIALS FOR THERMAL ENERGY STORAGE APPLICATIONS
    Trahan, Jamie
    Kuravi, Sarada
    Goswami, D. Yogi
    Rahman, Muhammad
    Stefanakos, Elias
    PROCEEDINGS OF THE ASME 6TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY - 2012, PTS A AND B, 2012, : 621 - 628