Reconfigurable Hardware Design for Automatic Epilepsy Seizure Detection using EEG Signals

被引:0
|
作者
Rafiammal, S. Syed [1 ]
Jamal, D. Najumnissa [2 ]
Mohideen, S. Kaja [1 ]
机构
[1] BS Abdur Rahman Crescent Inst Sci & Technol, Dept Elect & Commun Engn, Chennai, Tamil Nadu, India
[2] BS Abdur Rahman Crescent Inst Sci & Technol, Dept Elect & Instrumentat Engn, Chennai, Tamil Nadu, India
关键词
seizure detection; FPGA; high level synthesis; Mahalanobis distance; automatic detection; CLASSIFICATION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reconfigurable circuit designs for automatic seizure detection devices are essential to prevent epilepsy affected people from severe injuries and other health-related problems. In this proposed design, an automatic seizure detection algorithm based on the Linear binary Support Vector Machine learning algorithm (LSVM) is developed and implemented in a Field-Programmable Gate Array (FPGA). The experimental results showed that the mean detection accuracy is 86% and sensitivity is 97%. The resource utilization of the implemented design is less when compared to existing hardware implementations. The power consumption of the proposed design is 76mW at 100MHz. The experimental results assure that a physician can make use of this proposed design in detecting seizure events.
引用
收藏
页码:5803 / 5807
页数:5
相关论文
共 50 条
  • [41] Automatic Epileptic Seizure Detection in EEG Signals Using Multi-Domain Feature Extraction and Nonlinear Analysis
    Wang, Lina
    Xue, Weining
    Li, Yang
    Luo, Meilin
    Huang, Jie
    Cui, Weigang
    Huang, Chao
    ENTROPY, 2017, 19 (06)
  • [42] Epilepsy Detection by Processing of EEG signals using LabVIEW Simulation
    Hallur, S. N.
    Torse, D. A.
    Aithal, V. K.
    Santaji, S. S.
    2018 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT - 2018), 2018, : 1101 - 1106
  • [43] Classification of EEG Signals for Epilepsy Detection Using PCA Analysis
    Kar, Moushmi
    BIOMEDICAL ENGINEERING SCIENCE AND TECHNOLOGY, ICBEST 2023, 2024, 2003 : 204 - 219
  • [44] EMD Analysis of EEG Signals for Seizure Detection
    Shaikh, Mohd Hamza Naim
    Farooq, Omar
    Chandel, Garima
    ADVANCES IN SYSTEM OPTIMIZATION AND CONTROL, 2019, 509 : 189 - 196
  • [45] Seizure detection in neonatal EEG signals using EMD based features
    Chandel, Garima
    Farooq, Omar
    Shaikh, Mohd Hamza Naim
    Shanir, Muhammad P. P.
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2017, : 89 - 93
  • [46] Epileptic seizure detection using EEG signals and extreme gradient boosting
    Vanabelle, Paul
    De Handschutter, Pierre
    El Tahry, Riem
    Benjelloun, Mohammed
    Boukhebouze, Mohamed
    JOURNAL OF BIOMEDICAL RESEARCH, 2020, 34 (03): : 228 - 239
  • [47] Epileptic seizure detection using EEG signals and extreme gradient boosting
    Paul Vanabelle
    Pierre De Handschutter
    Ri?m El Tahry
    Mohammed Benjelloun
    Mohamed Boukhebouze
    TheJournalofBiomedicalResearch, 2020, 34 (03) : 228 - 239
  • [48] Automated human mind reading using EEG signals for seizure detection
    Ranga V.
    Gupta S.
    Meena J.
    Agrawal P.
    J. Med. Eng. Technol., 2020, 5 (237-246): : 237 - 246
  • [49] Automatic seizure detection using diffusion distance and BLDA in intracranial EEG
    Yuan, Shasha
    Zhou, Weidong
    Yuan, Qi
    Zhang, Yanli
    Meng, Qingfang
    EPILEPSY & BEHAVIOR, 2014, 31 : 339 - 345
  • [50] Automatic Detection of Abnormal EEG Signals Using WaveNet and LSTM
    Albaqami, Hezam
    Hassan, Ghulam Mubashar
    Datta, Amitava
    SENSORS, 2023, 23 (13)