Spectral decomposition of a finite-difference operator

被引:0
|
作者
Lui, SH [1 ]
Shivakumar, PN [1 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Eigenvalue; finite difference; Sommerfeld; absorbing boundary conditions;
D O I
10.1080/00207160500113215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give asymptotic expansions of the eigenvalues of the second derivative operator with Sommerfeld boundary conditions in one dimension. In terms of these eigenvalues, eigenpairs of the associated second-order finite-difference operator can be inferred. Eigenpairs of the Laplacian operator on a disk with absorbing boundary conditions are also derived.
引用
收藏
页码:1275 / 1286
页数:12
相关论文
共 50 条
  • [11] SPECTRAL AND FINITE-DIFFERENCE SOLUTIONS OF THE BURGERS-EQUATION
    BASDEVANT, C
    DEVILLE, M
    HALDENWANG, P
    LACROIX, JM
    OUAZZANI, J
    PEYRET, R
    ORLANDI, P
    PATERA, AT
    COMPUTERS & FLUIDS, 1986, 14 (01) : 23 - 41
  • [12] Optimized finite-difference operator for broadband seismic wave modeling
    Zhang, Jin-Hai
    Yao, Zhen-Xing
    GEOPHYSICS, 2013, 78 (01) : A13 - A18
  • [13] A nonlocal finite-difference operator with a complex parameter in the boundary condition
    A. V. Gulin
    N. S. Udovichenko
    Differential Equations, 2007, 43 : 943 - 949
  • [14] Optimizing Finite-Difference Operator in Seismic Wave Numerical Modeling
    Li, Hui
    Fang, Yuan
    Huang, Zhiguo
    Zhang, Mengyao
    Wei, Qing
    ALGORITHMS, 2022, 15 (04)
  • [15] A nonlocal finite-difference operator with a complex parameter in the boundary condition
    Gulin, A. V.
    Udovichenko, N. S.
    DIFFERENTIAL EQUATIONS, 2007, 43 (07) : 943 - 949
  • [16] Symplectic finite-difference time-domain scheme based on decomposition technique of the exponential operator for plasma media
    Liu, Song
    He, Zhifang
    Cheng, Sheng
    Zhong, Shuang-ying
    IET MICROWAVES ANTENNAS & PROPAGATION, 2016, 10 (02) : 129 - 133
  • [17] SUPPORT-OPERATOR FINITE-DIFFERENCE ALGORITHMS FOR GENERAL ELLIPTIC PROBLEMS
    SHASHKOV, M
    STEINBERG, S
    JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 118 (01) : 131 - 151
  • [18] Gaussian spectral rules for second order finite-difference schemes
    Vladimir Druskin
    Leonid Knizhnerman
    Numerical Algorithms, 2000, 25 : 139 - 159
  • [19] ACCURACY OF A FINITE-DIFFERENCE SCHEME IN A SPECTRAL PROBLEM WITH GENERALIZED SOLUTIONS
    PRIKAZCHIKOV, VG
    SEMCHUK, AR
    DIFFERENTIAL EQUATIONS, 1985, 21 (07) : 856 - 860
  • [20] A NOTE ON THE MIXED SPECTRAL FINITE-DIFFERENCE MODEL-EQUATIONS
    XU, DP
    TAYLOR, P
    BOUNDARY-LAYER METEOROLOGY, 1991, 56 (1-2) : 205 - 206