Decoupled Thermo- and pH-Responsive Hydrogel Microspheres Cross-Linked by Rotaxane Networks

被引:61
|
作者
Kureha, Takuma [1 ]
Aoki, Daichi [1 ]
Hiroshige, Seina [1 ]
Iijima, Keisuke [4 ,5 ]
Aoki, Daisuke [4 ,5 ]
Takata, Toshikazu [4 ,5 ]
Suzuki, Daisuke [1 ,2 ,3 ]
机构
[1] Shinshu Univ, Grad Sch Text Sci & Technol, 3-15-1 Tokida Ueda, Nagano 3868567, Japan
[2] Shinshu Univ, Inst Fiber Engn Interdisciplinary Cluster Cutting, Div Smart Text, 3-15-1 Tokida Ueda, Nagano 3868567, Japan
[3] JST CREST, 3-15-1 Tokida Ueda, Nagano 3868567, Japan
[4] Tokyo Inst Technol, Dept Chem Sci & Engn, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528552, Japan
[5] JST CREST, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528552, Japan
基金
日本学术振兴会;
关键词
hydrogel microspheres; multi-responsiveness; precipitation polymerization; rotaxane cross-linkers; supramolecular chemistry; CORE-SHELL MICROGELS; N-ISOPROPYLACRYLAMIDE; PARTICLES; COMPLEXES; POLYMERS; BEHAVIOR; DESIGN; CHARGE;
D O I
10.1002/anie.201709633
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rotaxane cross-linked (RC) microgels that exhibit a decoupled thermo- and pH-responsive volume transition were developed. The pH-induced changes of the aggregation/disaggregation states of cyclodextrin in the RC networks were used to control the swelling capacity of the entire microgels. Different from conventional thermo- and pH-responsive microgels, which are usually obtained from copolymerizations involving charged monomers, the RC microgels respond to temperature as intended, even in the presence of charged functional molecules such as dyes in the microgel dispersion. The results of this study should lead to new applications, including drug delivery systems that require a retention of their smart functions even in environments that may contain foreign ions, for example, in invivo experiments.
引用
收藏
页码:15393 / 15396
页数:4
相关论文
共 50 条
  • [21] pH-responsive hydrogel microspheres for efficient antibacterial activity
    Li, Na
    Lei, Yuelin
    Jiang, Na
    Jiang, Ze
    Cui, Jinlei
    Li, Enhui
    Du, Qiuzheng
    BIOCHEMICAL ENGINEERING JOURNAL, 2022, 189
  • [22] Synthesis and application of pH-responsive branched copolymer nanoparticles (PRBNs): a comparison with pH-responsive shell cross-linked micelles
    Weaver, Jonathan V. M.
    Adams, Dave J.
    SOFT MATTER, 2010, 6 (12) : 2575 - 2582
  • [23] pH-responsive shell cross-linked nanoparticles with hydrolytically labile cross-links
    Li, Yali
    Du, Wenjun
    Sun, Guorong
    Wooley, Karen L.
    MACROMOLECULES, 2008, 41 (18) : 6605 - 6607
  • [24] Swelling and ketoprofen release characteristics of thermo- and pH-responsive copolymer gels
    Negishi, M
    Hiroki, A
    Horikoshi, Y
    Miyajima, M
    Asano, M
    Katakai, R
    Yoshida, M
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 1999, 25 (04) : 437 - 444
  • [25] Facile Fabrication of Composite Membranes with Dual Thermo- and pH-Responsive Characteristics
    Ma, Bing
    Ju, Xiao-Jie
    Luo, Feng
    Liu, Yu-Qiong
    Wang, Yuan
    Liu, Zhuang
    Wang, Wei
    Xie, Rui
    Chu, Liang-Yin
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (16) : 14409 - 14421
  • [26] Thermo- and pH-Responsive Polymer Derived from Methacrylamide and Aspartic Acid
    Luo, Chunhui
    Liu, Yu
    Li, Zhibo
    MACROMOLECULES, 2010, 43 (19) : 8101 - 8108
  • [27] Self-Assembled Nanofiltration Membranes with Thermo- and pH-Responsive Behavior
    Saadat, Younes
    Tabatabaei, Seyed Mostafa
    Kim, Kyungtae
    Foudazi, Reza
    ACS ES&T ENGINEERING, 2024, 4 (06): : 1454 - 1468
  • [28] Thermo- and pH-responsive star-like polymers synthesized by photoATRP
    He, Jianhao
    Zhang, Wenjie
    Lv, Chunna
    Chen, Ruyi
    Wang, Linan
    Wang, Yudong
    Pan, Xiangcheng
    Polymer, 2021, 215
  • [29] Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release
    Zhao, Changwen
    Zhuang, Xiuli
    He, Pan
    Xiao, Chunsheng
    He, Chaoliang
    Sun, Jingru
    Chen, Xuesi
    Jing, Xiabin
    POLYMER, 2009, 50 (18) : 4308 - 4316
  • [30] Thermo- and pH-responsive star-like polymers synthesized by photoATRP
    He, Jianhao
    Zhang, Wenjie
    Lv, Chunna
    Chen, Ruyi
    Wang, Linan
    Wang, Yudong
    Pan, Xiangcheng
    POLYMER, 2021, 215