Peculiarities of quantum discord's geometric measure

被引:10
|
作者
Batle, J. [1 ,2 ]
Plastino, A. [1 ,2 ,3 ]
Plastino, A. R. [4 ,5 ]
Casas, M. [1 ,2 ]
机构
[1] Univ Illes Balears, Dept Fis, Palma de Mallorca 07122, Spain
[2] Univ Illes Balears, IFISC, Palma de Mallorca 07122, Spain
[3] Natl Univ La Plata, IFLP CCT CONICET, RA-1900 La Plata, Argentina
[4] Natl Univ La Plata, CREG UNLP CONICET, RA-1900 La Plata, Argentina
[5] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada, Spain
关键词
STATISTICAL-MECHANICS; XY-MODEL; ENTANGLEMENT; VOLUME; SET;
D O I
10.1088/1751-8113/44/50/505304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some properties of the quantum discord based on the geometric measure advanced by Dakic et al (2010 Phys. Rev. Lett. 105 190502) are discussed here by recourse to a systematic survey of the two-qubit state-space, with emphasis on Werner and MEM states. We explore the dependence of quantum discord on the degree of mixedness of the bipartite states, and also its connection with non-locality as measured by the maximum violation of a Bell inequality within the CHSH scenario. Some considerations regarding the XY model are also made.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Geometric measure of quantum discord and total quantum correlations in an N-partite quantum state
    Hassan, Ali Saif M.
    Joag, Pramod S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (34)
  • [22] Quantum coherence and geometric quantum discord
    Hu, Ming-Liang
    Hu, Xueyuan
    Wang, Jieci
    Peng, Yi
    Zhang, Yu-Ran
    Fan, Heng
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2018, 762 : 1 - 100
  • [23] Multipartite generalization of geometric measure of discord
    Hassan, Ali Saif M.
    Joag, Pramod S.
    [J]. CHINESE JOURNAL OF PHYSICS, 2024, 92 : 58 - 79
  • [24] Geometric global quantum discord
    Xu, Jianwei
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (40)
  • [25] Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states
    Daoud, M.
    Laamara, R. Ahl
    [J]. PHYSICS LETTERS A, 2012, 376 (35) : 2361 - 2371
  • [26] Geometric measure of quantum discord and the geometry of a class of two-qubit states
    Wei Song
    LongBao Yu
    Ping Dong
    DaChuang Li
    Ming Yang
    ZhuoLiang Cao
    [J]. Science China Physics, Mechanics and Astronomy, 2013, 56 : 737 - 744
  • [27] Geometric Measure of Quantum Discord for Entanglement of Total Dirac Fields in Noninertial Frames
    Wen-Chao Qiang
    Lei Zhang
    [J]. International Journal of Theoretical Physics, 2017, 56 : 1096 - 1107
  • [28] Geometric measure of quantum discord and the geometry of a class of two-qubit states
    SONG Wei
    YU LongBao
    DONG Ping
    LI DaChuang
    YANG Ming
    CAO ZhuoLiang
    [J]. Science China(Physics,Mechanics & Astronomy), 2013, Mechanics & Astronomy)2013 (04) : 737 - 744
  • [29] Geometric measure of quantum discord over two-sided projective measurements
    Xu, Jianwei
    [J]. PHYSICS LETTERS A, 2012, 376 (04) : 320 - 324
  • [30] Geometric Measure of Quantum Discord for Entanglement of Total Dirac Fields in Noninertial Frames
    Qiang, Wen-Chao
    Zhang, Lei
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (04) : 1096 - 1107