The braided Thompson's groups are of type F∞

被引:27
|
作者
Bux, Kai-Uwe [1 ]
Fluch, Martin G. [1 ]
Marschler, Marco [1 ]
Witzel, Stefan [2 ]
Zaremsky, Matthew C. B. [3 ]
机构
[1] Univ Bielefeld, Dept Math, D-33501 Bielefeld, Germany
[2] Univ Munster, Inst Math, D-48149 Munster, Germany
[3] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
关键词
FINITENESS PROPERTIES; CHESSBOARD COMPLEXES; HIGHER GENERATION; SUBGROUPS; ALGEBRA; STRAND;
D O I
10.1515/crelle-2014-0030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the braided Thompson's groups V-br and F-br are of type F-infinity, confirming a conjecture by John Meier. The proof involves showing that matching complexes of arcs on surfaces are highly connected. In an appendix, Zaremsky uses these connectivity results to exhibit families of subgroups of the pure braid group that are highly generating, in the sense of Abels and Holz.
引用
收藏
页码:59 / 101
页数:43
相关论文
共 50 条
  • [1] The braided Thompson's groups are of type F∞ (vol 718, pg 59, 2016)
    Bux, Kai-Uwe
    Witzel, Stefan
    Zaremsky, Matthew C. B.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 778 : 219 - 221
  • [2] Metric Properties of Braided Thompson's Groups
    Burillo, Jose
    Cleary, Sean
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (02) : 605 - 615
  • [3] A new family of infinitely braided Thompson's groups
    Aroca, Julio
    Cumplido, Maria
    JOURNAL OF ALGEBRA, 2022, 607 : 5 - 34
  • [4] Pure braid subgroups of braided Thompson's groups
    Brady, Tom
    Burillo, Jose
    Cleary, Sean
    Stein, Melanie
    PUBLICACIONS MATEMATIQUES, 2008, 52 (01) : 57 - 89
  • [5] A new family of infinitely braided Thompson's groups
    Aroca, Julio
    Cumplido, Maria
    JOURNAL OF ALGEBRA, 2022, 607 : 5 - 34
  • [6] Divergence Property of the Brown-Thompson Groups and Braided Thompson Groups
    Sheng, Xiaobing
    TRANSFORMATION GROUPS, 2025, 30 (01) : 413 - 446
  • [7] Bi-orderings on pure braided Thompson's groups
    Burillo, Jose
    Gonzalez-Meneses, Juan
    QUARTERLY JOURNAL OF MATHEMATICS, 2008, 59 : 1 - 14
  • [8] Braided Thompson groups with and without quasimorphisms
    Fournier-Facio, Francesco
    Lodha, Yash
    Zaremsky, Matthew C. B.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (03): : 1601 - 1622
  • [9] Pure infinitely braided Thompson groups
    Cumplido, Maria
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (12) : 5125 - 5137
  • [10] On normal subgroups of the braided Thompson groups
    Zaremsky, Matthew C. B.
    GROUPS GEOMETRY AND DYNAMICS, 2018, 12 (01) : 65 - 92