Deep defect passivation and shallow vacancy repair via an ionic silicone polymer toward highly stable inverted perovskite solar cells

被引:49
|
作者
Wang, Tong [1 ]
Li, Yuke [2 ,3 ]
Cao, Qi [1 ]
Yang, Jiabao [1 ]
Yang, Bowen [4 ,5 ]
Pu, Xingyu [1 ]
Zhang, Youzi [1 ]
Zhao, Junsong [1 ]
Zhang, Yixin [1 ]
Chen, Hui [1 ]
Hagfeldt, Anders [4 ,5 ]
Li, Xuanhua [1 ]
机构
[1] Northwestern Polytech Univ, Ctr Nano Energy Mat, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Ctr Sci Modeling & Computat, Shatin, Hong Kong, Peoples R China
[4] Uppsala Univ, Dept Chem, Angstrom Lab, SE-75120 Uppsala, Sweden
[5] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, Sch Basic Sci, CH-1015 Lausanne, Switzerland
基金
中国国家自然科学基金;
关键词
EFFICIENT; STABILITY; PERFORMANCE;
D O I
10.1039/d2ee02227c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Additive engineering is an effective strategy for defect passivation and performance improvement of perovskite solar cells (PSCs). However, few additives have achieved outstanding stability with high efficiency by simultaneously passivating deep and shallow defects. Herein, we design a novel ionic silicone polymer (PECL) with multi-active sites as an additive to modify inverted PSCs. The C-O groups in the PECL polymer can chelate with undercoordinated Pb2+ and Pb clusters to passivate deep defects; and the ionic groups in the PECL polymer can generate electrostatic interaction with both positively and negatively charged vacancies, which help to repair shallow defects. Moreover, we quantitatively reveal the effect of deep and shallow defects on the efficiency and stability of PSCs separately, by establishing the correlation between additives with different functional groups and the performance of devices. Consequently, the power conversion efficiency of the PECL-modified inverted PSC increases from 20.02% to 23.11%. More importantly, the encapsulated PSCs maintain 95% of their initial steady-state power output after 1500 hours under AM 1.5 illumination at the maximum power point at 45 degrees C. Therefore, we provide a universal guideline of polymer structure design for defect healing in stabilizing PSCs with high efficiency.
引用
收藏
页码:4414 / 4424
页数:11
相关论文
共 50 条
  • [21] Efficient and stable perovskite solar cells via shortwave infrared polymer passivation
    Xiong, Jian
    Eedugurala, Naresh
    Qi, Yifang
    Liu, Wei
    Benasco, Anthony R.
    Zhang, Qiqi
    Morgan, Sarah E.
    Blanton, Michael D.
    Azoulay, Jason D.
    Dai, Qilin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 220
  • [22] Interfacial defect passivation via imidazolium bromide for efficient, stable perovskite solar cells
    Chen, Zijing
    Jiang, Shiyu
    Liu, Zhenghao
    Li, Yiming
    Shi, Jiangjian
    Wu, Huijue
    Luo, Yanhong
    Li, Dongmei
    Meng, Qingbo
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (26) : 16070 - 16078
  • [23] Atomistic Mechanism of Surface-Defect Passivation: Toward Stable and Efficient Perovskite Solar Cells
    Zhang, Weiyi
    Li, Quan-Song
    Li, Ze-Sheng
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (29): : 6686 - 6693
  • [24] Effective Interface Defect Passivation via Employing 1-Methylbenzimidazole for Highly Efficient and Stable Perovskite Solar Cells
    Zheng, Haiying
    Liu, Guozhen
    Wu, Weiwei
    Xu, Huifen
    Pan, Xu
    CHEMSUSCHEM, 2021, 14 (15) : 3147 - 3154
  • [25] Surface Passivation of Perovskite by Hole-Blocking Layer toward Efficient and Stable Inverted Solar Cells
    Wang, Yandong
    Zhao, Rongmei
    Yu, Xin
    Li, Liufei
    Lin, Puan
    Zhang, Shantao
    Gao, Shuang
    Li, Xinyu
    Zhang, Wenfeng
    Zhang, Wen-Hua
    Yang, Shangfeng
    SOLAR RRL, 2024, 8 (11):
  • [26] Tri-Brominated Perovskite Film Management and Multiple-Ionic Defect Passivation for Highly Efficient and Stable Solar Cells
    Gong, Zekun
    He, Benlin
    Zhu, Jingwei
    Yao, Xinpeng
    Wang, Sudong
    Chen, Haiyan
    Duan, Yanyan
    Tang, Qunwei
    SOLAR RRL, 2021, 5 (04)
  • [27] Surface Passivation Toward Efficient and Stable Perovskite Solar Cells
    Xia, Junmin
    Liang, Chao
    Gu, Hao
    Mei, Shiliang
    Li, Shengwen
    Zhang, Nan
    Chen, Shi
    Cai, Yongqing
    Xing, Guichuan
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (01)
  • [28] Surface Passivation Toward Efficient and Stable Perovskite Solar Cells
    Junmin Xia
    Chao Liang
    Hao Gu
    Shiliang Mei
    Shengwen Li
    Nan Zhang
    Shi Chen
    Yongqing Cai
    Guichuan Xing
    Energy & Environmental Materials, 2023, 6 (01) : 6 - 29
  • [29] Double-site defect passivation of perovskite film via fullerene additive engineering toward highly efficient and stable bulk heterojunction solar cells
    Jia, Lingbo
    Huang, Fanyang
    Ding, Honghe
    Niu, Chuang
    Shang, Yanbo
    Hu, Wanpei
    Li, Xingcheng
    Yu, Xin
    Jiang, Xiaofen
    Cao, Ruiguo
    Zhu, Junfa
    Wang, Guan-Wu
    Chen, Muqing
    Yang, Shangfeng
    NANO TODAY, 2021, 39 (39)
  • [30] Surface Passivation Toward Efficient and Stable Perovskite Solar Cells
    Junmin Xia
    Chao Liang
    Hao Gu
    Shiliang Mei
    Shengwen Li
    Nan Zhang
    Shi Chen
    Yongqing Cai
    Guichuan Xing
    Energy & Environmental Materials, 2023, (01) : 6 - 29