The promising photo anode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell

被引:31
|
作者
Cao, Jiupeng [1 ]
Zhu, Yatong [1 ]
Yang, Xiaoyu [1 ]
Chen, Yang [1 ]
Li, Yuxiang [1 ]
Xiao, Hongdi [1 ]
Hou, Wanguo [2 ]
Liu, Jianqiang [1 ]
机构
[1] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
[2] Shandong Univ, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; Quantum dot sensitized solar cell; Layered double hydroxide; Mixed metal oxides; Photo anode; PHOTOVOLTAIC PERFORMANCE; CHARGE-TRANSPORT; TIO2; FILMS; EFFICIENCY; NANOSHEETS; LAYER; CIRCUIT;
D O I
10.1016/j.solmat.2016.08.003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, the graphene sheets produced by supercritical CO2 exfoliation of graphite were used to improve the photovoltaic performance of the CdS quantum dot-sensitized solar cells (QDSSCs). The zinc titanium mixed metal oxides (MMO) based on layered double hydroxide (LDH) precursor and the graphene/MMO hybrid materials were used as photoanodes of the CdS QDSSCs, respectively. The presence of graphene in the photoanodes was confirmed by Raman spectroscopy, X-ray diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS). The influence of graphene concentration on the performance of CdS QDSSCs was studied by electrochemical method. The addition of graphene enhanced QDs adsorption properties and lowered internal resistance, so the QDSSCs displayed higher power conversion efficiency (PCE). Accordingly, the highest PCE of the QDSSCs based on graphene/Zn-Ti MMO photoanode reached 0.44% and increased 37.5% in compared with that based on plain Zn-Ti MMO working electrodes. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:814 / 819
页数:6
相关论文
共 50 条
  • [21] Au Nanoparticles as Interfacial Layer for CdS Quantum Dot-sensitized Solar Cells
    Zhu, Guang
    Su, Fengfang
    Lv, Tian
    Pan, Likun
    Sun, Zhuo
    NANOSCALE RESEARCH LETTERS, 2010, 5 (11): : 1749 - 1754
  • [22] Effect of Mn Doping on Properties of CdS Quantum Dot-Sensitized Solar Cells
    Li, Tianxing
    Zou, Xiaoping
    Zhou, Hongquan
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2014, 2014
  • [23] Au Nanoparticles as Interfacial Layer for CdS Quantum Dot-sensitized Solar Cells
    Guang Zhu
    Fengfang Su
    Tian Lv
    Likun Pan
    Zhuo Sun
    Nanoscale Research Letters, 5
  • [24] Dependences of the optical absorption and photovoltaic properties of CdS quantum dot-sensitized solar cells on the CdS quantum dot adsorption time
    Hachiya, Sojiro
    Onishi, Yohei
    Shen, Qing
    Toyoda, Taro
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (05)
  • [25] Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells
    Zhu, Guang
    Xu, Tao
    Lv, Tian
    Pan, Likun
    Zhao, Qingfei
    Sun, Zhuo
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2011, 650 (02) : 248 - 251
  • [26] Carbon quantum dots improving photovoltaic performance of CdS quantum dot-sensitized solar cells
    Huang, Ping
    Xu, Shunjian
    Zhang, Meng
    Zhong, Wei
    Xiao, Zonghu
    Luo, Yongping
    Optical Materials, 2020, 110
  • [27] Surface modification on TiO2 nanoparticles in CdS/CdSe Quantum Dot-sensitized Solar Cell
    Kim, Soo-Kyoung
    Son, Min-Kyu
    Park, Songyi
    Jeong, Myeong-Soo
    Prabakar, Kandasamy
    Kim, Hee-Je
    ELECTROCHIMICA ACTA, 2014, 118 : 118 - 123
  • [28] Carbon quantum dots improving photovoltaic performance of CdS quantum dot-sensitized solar cells
    Huang, Ping
    Xu, Shunjian
    Zhang, Meng
    Zhong, Wei
    Xiao, Zonghu
    Luo, Yongping
    OPTICAL MATERIALS, 2020, 110
  • [29] CdS quantum dot-sensitized ZnO nanorod-based photoelectrochemical solar cells
    Thambidurai, M.
    Muthukumarasamy, N.
    Arul, N. Sabari
    Agilan, S.
    Balasundaraprabhu, R.
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (08) : 3267 - 3273
  • [30] CdSe quantum dot-sensitized solar cell: Effect of size and attach mode of quantum dot
    Shao, Feiyan
    Li, Ming
    Yang, Jianwen
    Liu, Yongpin
    Zhang, Lingzhi
    JOURNAL OF NANO RESEARCH, 2015, 30 : 78 - 85